CSE 326: Data Structures Lecture \#17 Heuristic Graph Search

Henry Kautz
Winter Quarter 2002

Implicitly Generated Graphs

- A huge graph may be implicitly specified by rules for generating it on-the-fly
- Blocks world:
- vertex $=$ relative positions of all blocks
- edge $=$ robot arm stacks one block

Problem: Branching Factor

- Cannot search such huge graphs exhaustively. Suppose we know that goal is only d steps away.
- Dijkstra's algorithm is basically breadth-first search (modified to handle arc weights)
- Breadth-first search (or for weighted graphs, Dijkstra's algorithm) - If out-degree of each node is 10 , potentially visits 10^{d} vertices
- 10 step plan $=10$ billion vertices visited!

Huge Graphs

- Consider some really huge graphs..
- All cities and towns in the World Atlas
- All stars in the Galaxy
- All ways 10 blocks can be stacked

Huh???

Blocks World

- Source $=$ initial state of the blocks
- Goal = desired state of the blocks
- Path source to goal = sequence of actions (program) for robot arm!
- n blocks $\approx \mathrm{n}^{\mathrm{n}}$ vertices
- 10 blocks ≈ 10 billion vertices!

Best-First Search

- The Manhattan distance $(\Delta \mathrm{x}+\Delta \mathrm{y})$ is an estimate of the distance to the goal
- a heuristic value
- Best-First Search
- Order nodes in priority to minimize estimated distance to the goal $\mathrm{h}(\mathrm{n})$
- Compare: BFS / Dijkstra
- Order nodes in priority to minimize distance from the start

Best First in Action

- Suppose you live in Manhattan; what do you do?

Problem 2: Optimality

- With Best-First Search, are you guaranteed a shortest path is found when
- goal is first seen?
- when goal is removed from priority queue (as with Dijkstra?)

Sub-Optimal Solution

- No! Goal is by definition at distance 0 : will be removed from priority queue immediately, even if a shorter path exists!

Synergy?

- Dijkstra / Breadth First guaranteed to find optimal solution
- Best First often visits far fewer vertices, but may not provide optimal solution
- Can we get the best of both?

A* ("A star")

- Order vertices in priority queue to minimize (distance from start) $+($ estimated distance to goal)
$\mathrm{f}(\mathrm{n})=\mathrm{g}(\mathrm{n})+\mathrm{h}(\mathrm{n})$
$f(n)=$ priority of a node
$g(n)=$ true distance from start
$h(n)=$ heuristic distance to goal

Optimality

- Suppose the estimated distance (h) is always less than or equal to the true distance to the goal
- heuristic is a lower bound on true distance
- Then: when the goal is removed from the priority queue, we are guaranteed to have found a shortest path!

Proof of A* Optimality

- A* terminates when G is popped from the heap.
- Suppose G is popped but the path found isn't optimal: priority $(\mathrm{G})>$ optimal path length c
- Let P be an optimal path from S to G , and let N be the last vertex on that path that has been visited but not yet popped. There must be such an N , otherwise the optimal path would have been found. priority $(\mathrm{N})=\mathrm{g}(\mathrm{N})+\mathrm{h}(\mathrm{N}) \leq \mathrm{c}$
- So N should have popped before G can pop. Contradiction.

What About Those Blocks?

- "Distance to goal" is not always physical distance
- Blocks world:
- distance $=$ number of stacks to perform
- heuristic lower bound = number of blocks out of place

\# out of place $=2$, true distance to goal $=3$

Other Real-World Applications

- Routing finding - computer networks, airline route planning
- VLSI layout - cell layout and channel routing
- Production planning - "just in time" optimization
- Protein sequence alignment
- Many other "NP-Hard" problems
- A class of problems for which no exact polynomial time algorithms exist - so heuristic search is the best we can hope for

Coming Up

- How to make Depth First Search optimal
- Other graph problems
- Connected components
- Spanning trees
- Max-Flow
- Other cool data structures \& algorithms
- Search trees for graphical data
- Huffman codes
- Mergeable heaps

