
1

CSE 326: Data Structures
Lecture #17

Heuristic Graph Search

Henry Kautz

Winter Quarter 2002

Huge Graphs
• Consider some really huge graphs…

– All cities and towns in the World Atlas

– All stars in the Galaxy

– All ways 10 blocks can be stacked

Huh???

Implicitly Generated Graphs

• A huge graph may be implicitly specified by rules for
generating it on-the-fly

• Blocks world:
– vertex = relative positions of all blocks
– edge = robot arm stacks one block

stack(blue,red)

stack(green,red)

stack(green,blue)

stack(blue,table)

stack(green,blue)

Blocks World

• Source = initial state of the blocks

• Goal = desired state of the blocks

• Path source to goal = sequence of actions
(program) for robot arm!

• n blocks ≈ nn vertices

• 10 blocks ≈ 10 billion vertices!

Problem: Branching Factor

• Cannot search such huge graphs exhaustively.
Suppose we know that goal is only d steps away.

• Dijkstra’s algorithm is basically breadth-first
search (modified to handle arc weights)

• Breadth-first search (or for weighted graphs,
Dijkstra’s algorithm) – If out-degree of each node
is 10, potentially visits 10d vertices
– 10 step plan = 10 billion vertices visited!

An Easier Case

• Suppose you live in Manhattan; what do you do?

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S

G

2

Best-First Search

• The Manhattan distance (∆ x+ ∆ y) is an estimate
of the distance to the goal
– a heuristic value

• Best-First Search
– Order nodes in priority to minimize estimated distance

to the goal h(n)

• Compare: BFS / Dijkstra
– Order nodes in priority to minimize distance from the

start

Best First in Action

• Suppose you live in Manhattan; what do you do?

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S

G

Problem 1: Led Astray

• Eventually will expand vertex to get back on the
right track

52nd St

51st St

50th St

10
th

A
ve

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

3
rd

A
ve

2
nd

A
ve

S G

Problem 2: Optimality

• With Best-First Search, are you guaranteed a
shortest path is found when
– goal is first seen?

– when goal is removed from priority queue (as with
Dijkstra?)

Sub-Optimal Solution
• No! Goal is by definition at distance 0: will be

removed from priority queue immediately, even if
a shorter path exists!

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

h=2

h=1
h=4

h=5

Synergy?

• Dijkstra / Breadth First guaranteed to find optimal
solution

• Best First often visits far fewer vertices, but may
not provide optimal solution

– Can we get the best of both?

3

A* (“A star”)

• Order vertices in priority queue to minimize

(distance from start) + (estimated distance to goal)

f(n) = g(n) + h(n)

f(n) = priority of a node

g(n) = true distance from start

h(n) = heuristic distance to goal

Optimality
• Suppose the estimated distance (h) is

always less than or equal to the truedistance to the
goal

– heuristic is a lower bound on true distance

• Then: when the goal is removed from the priority
queue, we are guaranteed to have found a shortest
path!

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

55052nd & 9th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

54151st & 9th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St
75250th & 9th

53251st & 8th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St
74350th & 8th

75250th & 9th

52351st & 7th

72552nd & 4th

f(n)h(n)g(n)vertex

4

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

73450th & 7th

74350th & 8th

75250th & 9th

51451st & 6th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

73450th & 7th

74350th & 8th

75250th & 9th

50551st & 5th

72552nd & 4th

f(n)h(n)g(n)vertex

Problem 2 Revisited

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St
73450th & 7th

74350th & 8th

75250th & 9th

72552nd & 4th

f(n)h(n)g(n)vertex

DONE!

What Would Dijkstra Have
Done?

52nd St

51st St

9
th

A
ve

8
th

A
ve

7
th

A
ve

6
th

A
ve

5
th

A
ve

4
th

A
ve

S

G

(5 blocks)

50th St

49th St

48th St

47th St

Proof of A* Optimality

• A* terminates when G is popped from the heap.
• Suppose G is popped but the path found isn’ t optimal:

priority(G) > optimal path length c

• Let P be an optimal path from S to G, and let N be the last
vertex on that path that has been visited but not yet popped.
There must be such an N, otherwise the optimal path would have been

found.
priority(N) = g(N) + h(N) ≤ c

• So N should have popped before G can pop. Contradiction.

S

N

G
non-optimal path to G

portion of optimal
path found so far

undiscovered portion
of shortest path

What About Those Blocks?

• “Distance to goal” is not always physical distance

• Blocks world:
– distance = number of stacks to perform

– heuristic lower bound = number of blocks out of place

out of place = 2, true distance to goal = 3

5

Other Real-World Applications

• Routing finding – computer networks, airline
route planning

• VLSI layout – cell layout and channel routing
• Production planning – “ just in time” optimization
• Protein sequence alignment
• Many other “NP-Hard” problems

– A class of problems for which no exact polynomial
time algorithms exist – so heuristic search is the best
we can hope for

Coming Up

• How to make Depth First Search optimal
• Other graph problems

– Connected components
– Spanning trees
– Max-Flow

• Other cool data structures & algorithms
– Search trees for graphical data
– Huffman codes
– Mergeable heaps

