CSE 326: Data Structures
Lecture #19
More Fun with Graphs

Henry Kautz
Winter Quarter 2002

Today

* How to Make Depth-First Search Find Optimal
Paths
— Why bother?
* Finding Connected Components
— Application to machine vision
* Finding Minimum Spanning Trees
— Yet another use for union/find

Is BFS the Hands Down Winner?

Consider finding a path from vertex Sto G in an unweighted
graph where you do not have a heuristic function h(n).

» Depth-first search
— Simpleto implement (implicit or explict stack)
— Doesnot dways find shortest paths
— Must be careful to “mark” visited vertices, or you could go into an
infinite loop if thereisacycle
» Breadth-first search
— Simple to implement (queue)
— Always finds shortest paths

— Marking visited nodes can improve efficiency, but even without
doing so search is guaranteed to terminate

Space Requirements

Consider space required by the stack or queue...
¢ Suppose

— Gisknown to be at distance d from S

— Each vertex n has k out-edges

— There are no (undirected or directed) cycles
» BFS queue will grow to size kd

— Will simultaneously contain all nodes that are at
distance d (once last vertex at distance d-1 is expanded)
— For k=10, d=15, size is 1,000,000,000,000,000

DFS Space Reguirements

e Consider DFS, where we limit the depth of the search
tod
— Force abacktrack at d+1
— When visiting a node n at depth d, stack will contain
 (at mogt) k-1 siblings of n
« parent of n
« siblingsof parent of n
« grandparent of n
« siblingsof grandparent of n ...
« DFS queue grows at most to size dk
— For k=10, d=15, sizeis 150
— Compare with BFS 1,000,000,000,000,000

Conclusion

 For very large graphs— ones that are generated
“on thefly” rather than stored entirely in memory
—DFSis hugely more memory efficient, if we
know the distance to the goal vertex!

» But suppose we don’t know d. What isthe
(obvious) strategy?

Iterative Deepening DFS

I terativeDeepeni ngDFS(vertex s, g){
for (i=1;true;i++)
if DFS(i, s, g) return;
}
/1 Al'so need to keep track of path found
bool DFS(int limt, vertex s, g){
if (s==g) return true;
if (limt-- <=0) return fal se;
for (nin children(s))
if (DFS(limt, n, g)) return true;
return false;

}

Analysis of Iterative Deepening

« Even without “marking” nodes as visited,

iterative-deepening DFS never goesinto an

infinite loop

— For very large graphs, memory cost of keeping track of
visited vertices may make marking prohibitive

» Work performed with limit < actual distanceto G

iswasted — but the wasted work is usually small
compared to amount of work done during the last
iteration

Asymptotic Analysis

* Thereare“pathological” graphsfor which
iterative deepening is bad:

n=d
S O \) O O G
Iterative Deepening DFS =

1+(1+2)+(1+2+3+...)+...:Zn:2j =0(n?)

i=1 j=1

BFS=0(n)

A Better Case

Suppose each vertex n has k out-edges
— Wedon't worry about cycles —just search the vertices
over again
» Exhaustive DFSto level i reaches ki vertices —
requires time cki for some constant ¢

* |terative Deepening DFS(d) =
d
z ki = O(kd) ignore low order terms!
~

BFS = 0O(k")

(More) Conclusions

¢ Tofind a shortest path between two nodesin a
unweighted graph where no heuristic functionis
known, use either BFS or Iterated DFS

« If thegraphislarge, Iterated DFS typically uses
much less memory

« |f agood heuristic function is known, use A*

— But what about memory requirements for A* for very
large graphs??!!

(Final?) Conclusions & Questions

* Intheworst case A* can also require a (priority)
queue of size exponential in d, the distanceto the
goal vertex

* Question: Can one create an iterated, depth-first
version of A* that (typically) uses less memory?

— Yes, but you'll have to wait until you take CSE 473,
Introduction to Artificial Intelligence to seeit!

» Related Question: How can we adapt Iterated DFS
for weighted graphs, in order to get an algorithm
that is more memory efficient than Dijkstra' s?

And.now for*
~oiethin

Counting Connected Components

O 2 A

Initialize the cost of each vertex to co

Num_cc=0

While there are vertices of cost o {
Pick an arbitrary such vertex S, set its cost to 0
Find paths from S
Num_cc ++}

Using DFS

Lo

Set each vertex to “unvisited”

Num_cc=0

While there are unvisited vertices {
Pick an arbitrary such vertex S
Perform DFS from S, marking vertices as visited
Num_cc ++}

Complexity = O([V [+]|E])

Using Union/ Find

D L A

Put each nodein its own equivalence class
Num_cc=0
For each edge E = <x,y>
Union(x,y)
Return number of equivalence classes

Complexity =

Using Union/ Find

O L A

Put each nodein its own equivalence class
Num_cc=0
For each edge E = <x,y>
Union(x,y)
Return number of equivalence classes

Complexity = O(|V [+[E| ack(|E[,[V])

Machine Vision: Blob Finding

Machine Vision: Blob Finding

=9

Blob Finding

» Matrix can be considered an efficient
representation of agraph with avery regular
structure

e Cdl = vertex

Adjacent cells of same color = edge between
vertices

Blob finding = finding connected components

Tradeoffs

« Both DFS and Union/Find approaches are
(essentially) O(|E[+|V|) = O(|E]) for binary images
¢ For each component, DFS (“recursive labeling”)
can move all over the image — entire image must
bein main memory
« Better in practice: row-by-row processing
— localizes accesses to memory
— typically 1-2 orders of magnitude faster!

High-Level Blob-Labeling

. Scan through image left/right and top/bottom

. If acell issame color as (connected to) cell to
right or below, then union them

. Give the same blob number to cellsin each
equivalence class

Blob-Labeling Algorithm

Put each cell <x,y>init's own equivalence class
For each cell <x,y>
if color[x,y] == color[x+1,y] then
Union(<x,y>, <x+1,y>)
if color[x,y] == color[x,y+1] then
Union(<x,y>, <x,y+1>)
label =0
For each root <x,y>
blobnum[x,y] = ++ label;
For each cell <x,y>
blobnum([x,y] = blobnum(Find(<x,y>))

Spanning Tree

Sphanning tree: a subset of the edges from a connected graph
that...
...touches dl verticesin the graph (spans the graph)
...forms atree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the least total
edge cost.

Applications of Minimal
Spanning Trees

¢ Communication networks Ve

« VLSI design .
heck
LZ,"—

¢ Transportation systems ey

Good approximation to some NP-hard problems
(morelater)

Kruskal’s Algorithm for
Minimum Spanning Trees
A greedy algorithm:

Initialize all verticesto unconnected
While there are still unmarked edges
Pick alowest cost edgee = (u, v) and mark it

If u and v are not already connected, add e to the
minimum spanning tree and connect u and v

Sound familiar?
(Think maze generation.)

Kruskal’s Algorithm in Action (1/5)

Kruska’s Algorithm in Action (2/5)

Kruskal’s Algorithm in Action (3/5)

Kruskal’s Algorithm in Action (4/5)

Kruska’s Algorithm Completed (5/5)

Why Greediness Works

Proof by contradiction that Kruskal’s finds a minimum
spanning tree:

* Assume another spanning tree has lower cost than
Kruskal’s.

» Pickanedgee, = (u, v) inthattreethat’snotin

Kruskal’s.

Consider the point in Kruskal’s algorithm where u's set

and V's set were about to be connected. Kruskal selected

some edge to connect them: call ite, .

* But, e, must have at most the same cost as e, (otherwise
Kruskal would have selected it instead).

* So, swap e, for e, (at worst keeping the cost the same)

* Repeat until the tree isidentical to Kruskal’s, where the
cost is the same or lower than the original cost:
contradiction!

Data Structures
for Kruskal’s Algorithm

| E| times: Once:

Pick the lowest cost edge... Initialize heap of edges...

buildHeap
. findMin/deleteMin
| E| times:
If u and v are not already connected...
...connectu and v.

“—— union

runtime: [El + [Ellog [E| + [E|ack([ELIV]

Data Structures
for Kruskal’s Algorithm

| | times: . Once:
Pick the lowest cost edge... Initialize heap of edges...

buildHeap

. findMin/deleteMin
| E| times:
If u and v are not already connected...
...connectu and v.

“—— union

runtime: [El + [Ellog [E| + [E| ack([ELIV]) = O([ElloglE]

Prim’s Algorithm

¢ Canalsofind Minimum Spanning Treesusing a
variation of Dijkstra's algorithm:

Pick ainitial node

Until graph is connected:
Choose edge (u,v) which is of minimum cost
among edgeswhereu isin tree but v is not
Add (u,v) to thetree

« Same“greedy” proof, same asymptotic
complexity

Does Greedy Always Work?

¢ Consider the following problem:

Given agraph G = (V,E) and a designated subset of
vertices S, find aminimum cost tree that includes all
of S

« Exactly the same as a minimum spanning tree, except
that it does not have to include ALL the vertices—
only the specified subset of vertices.

— Does Kruskal’s or Prim's work?

Nope!

« Greedy can fail to be optimal

— because different solutions may contain different “non-

designated” vertices, proof that you can covert one to
the other doesn’t go through

¢ This Minimum Steiner Tree problem has no
known solution of O(n¥) for any fixed k

— NP-complete problems strike again!

— Finding a spanning tree and then pruning it a pretty
good approximation

Some other NP-Complete
Problems

If you see one: approximate or search (maybe A*),
and be prepared to wait...

* Traveling Salesman — given a complete weighted
graph, find a minimum cost simple cycle of al the
nodes.

* Graph Coloring — can each nodein a graph be
given acolor from a set of k colors, such that no
adjacent nodes receive the same color?

A Great Book Y ou Should Own!

« Computers and Intractability: A Guideto the
Theory of NP-Completeness, by Michael S. Garey
and David S. Johnson

