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CSE 326: Data Structures
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More Fun with Graphs

Henry Kautz

Winter Quarter 2002

Today

• How to Make Depth-First Search Find Optimal 
Paths
– Why bother?

• Finding Connected Components
– Application to machine vision

• Finding Minimum Spanning Trees
– Yet another use for union/find

Is  BFS the Hands Down Winner?

Consider finding a path from vertex S to G in an unweighted
graph where you do not have a heuristic function h(n).

• Depth-first search
– Simple to implement (implicit or explict stack)

– Does not always find shortest paths

– Must be careful to “mark”  visited vertices, or you could go into an 
infinite loop if there is a cycle

• Breadth-first search
– Simple to implement (queue)

– Always finds shortest paths

– Marking visited nodes can improve efficiency, but even without 
doing so search is guaranteed to terminate

Space Requirements

Consider space required by the stack or queue…

• Suppose 
– G is known to be at distance d from S

– Each vertex n has k out-edges

– There are no (undirected or directed) cycles

• BFS queue will grow to size kd

– Will simultaneously contain all nodes that are at 
distance d (once last vertex at distance d-1 is expanded)

– For k=10, d=15, size is 1,000,000,000,000,000

DFS Space Requirements
• Consider DFS, where we limit the depth of the search 

to d
– Force a backtrack at d+1

– When visiting a node n at depth d, stack will contain
• (at most) k-1 siblings of n

• parent of n

• siblings of parent of n

• grandparent of n

• siblings of grandparent of n …

• DFS queue grows at most to size dk
– For k=10, d=15, size is 150

– Compare with BFS 1,000,000,000,000,000

Conclusion

• For very large graphs – ones that are generated 
“on the fly”  rather than stored entirely in memory 
– DFS is hugely more memory efficient, if we 
know the distance to the goal vertex!

• But suppose we don’ t know d.  What is the 
(obvious) strategy?
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Iterative Deepening DFS
I t er at i veDeepeni ngDFS( ver t ex s,  g) {

f or  ( i =1; t r ue; i ++)

i f  DFS( i ,  s ,  g)  r et ur n;

}

/ /  Al so need t o keep t r ack of  pat h f ound
bool  DFS( i nt l i mi t ,  ver t ex s,  g) {

i f  ( s==g)  r et ur n t r ue;

i f  ( l i mi t - - <= 0)  r et ur n f al se;

f or  ( n i n chi l dr en( s) )
i f  ( DFS( l i mi t ,  n,  g) )  r et ur n t r ue;

r et ur n f al se;

}

Analysis of Iterative Deepening

• Even without “marking”  nodes as visited, 
iterative-deepening DFS never goes into an 
infinite loop
– For very large graphs, memory cost of keeping track of 

visited vertices may make marking prohibitive

• Work performed with limit < actual distance to G 
is wasted – but the wasted work is usually small
compared to amount of work done during the last
iteration

Asymptotic Analysis

• There are “pathological”  graphs for which 
iterative deepening is bad:
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A Better Case
Suppose each vertex n has k out-edges

– We don’ t worry about cycles – just search the vertices 
over again

• Exhaustive DFS to level i reaches ki vertices –
requires time cki for some constant c
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(More) Conclusions

• To find a shortest path between two nodes in a 
unweighted graph where no heuristic function is 
known, use either BFS or Iterated DFS

• If the graph is large, Iterated DFS typically uses 
much less memory

• If a good heuristic function is known, use A*

– But what about memory requirements for A* for very 
large graphs??!!

(Final?) Conclusions & Questions

• In the worst case A* can also require a (priority) 
queue of size exponential in d, the distance to the 
goal vertex

• Question: Can one create an iterated, depth-first 
version of A* that (typically) uses less memory?
– Yes, but you’ ll have to wait until you take CSE 473, 

Introduction to Artificial Intelligence to see it!

• Related Question: How can we adapt Iterated DFS 
for weighted graphs, in order to get an algorithm 
that is more memory efficient than Dijkstra’s?



3

Counting Connected Components

Initialize the cost of each vertex to ∞
Num_cc = 0

While there are vertices of cost ∞ {

Pick an arbitrary such vertex S, set its cost to 0

Find paths from S

Num_cc ++ }

Using DFS

Set each vertex to “ unvisited”

Num_cc = 0

While there are unvisited vertices {

Pick an arbitrary such vertex S

Perform DFS from S, marking vertices as visited

Num_cc ++ }

Complexity = O(|V|+|E|)

Using Union / Find

Put each node in its own equivalence class

Num_cc = 0

For each edge E = <x,y> 

Union(x,y)

Return number of equivalence classes

Complexity = 

Using Union / Find

Put each node in its own equivalence class

Num_cc = 0

For each edge E = <x,y> 

Union(x,y)

Return number of equivalence classes

Complexity = O(|V|+|E| ack(|E|,|V|))

Machine Vision: Blob Finding
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Machine Vision: Blob Finding
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Blob Finding

• Matrix can be considered an efficient 
representation of a graph with a very regular 
structure

• Cell = vertex

• Adjacent cells of same color = edge between 
vertices

• Blob finding = finding connected components

Tradeoffs

• Both DFS and Union/Find approaches are 
(essentially) O(|E|+|V|) = O(|E|) for binary images

• For each component, DFS (“ recursive labeling”) 
can move all over the image – entire image must 
be in main memory

• Better in practice:  row-by-row processing
– localizes accesses to memory

– typically 1-2 orders of magnitude faster!

High-Level Blob-Labeling

• Scan through image left/right and top/bottom

• If a cell is same color as (connected to) cell to 
right or below, then union them

• Give the same blob number to cells in each 
equivalence class

Blob-Labeling Algorithm
Put each cell <x,y> in it’ s own equivalence class
For each cell  <x,y>

if color[x,y] == color[x+1,y] then
Union( <x,y>,  <x+1,y> ) 

if color[x,y] == color[x,y+1] then
Union( <x,y>,  <x,y+1> )

label = 0
For each root <x,y>

blobnum[x,y] = ++ label;
For each cell <x,y>

blobnum[x,y] = blobnum( Find(<x,y>) )

Spanning tree: a subset of the edges from a connected graph 
that…
…touches all vertices in the graph (spans the graph)
…forms a tree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the least total 
edge cost.

Spanning Tree
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Applications of Minimal 
Spanning Trees

• Communication networks

• VLSI design

• Transportation systems

• Good approximation to some NP-hard problems 
(more later)

Kruskal’s Algorithm for 
Minimum Spanning Trees

A greedy algorithm:

Initialize all vertices to unconnected

While there are still unmarked edges
Pick a lowest cost edge e = ( u,  v) and mark it

If u and v are not already connected, add e to the 
minimum spanning tree and connect u and v

Sound familiar? 
(Think maze generation.)

Kruskal’s Algorithm in Action (1/5)
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Kruskal’s Algorithm in Action (2/5)
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Kruskal’s Algorithm in Action (3/5)
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Kruskal’s Algorithm in Action (4/5)
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Kruskal’s Algorithm Completed (5/5)
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Why Greediness Works
Proof by contradiction that Kruskal’ s finds a minimum 

spanning tree:
• Assume another spanning tree has lower cost than 

Kruskal’ s.
• Pick an edge e1 = ( u,  v) in that tree that’ s not in 

Kruskal’ s.
• Consider the point in Kruskal’ s algorithm where u’s set 

and v’s set were about to be connected.  Kruskal selected 
some edge to connect them:  call it e2 .

• But, e2 must have at most the same cost as e1 (otherwise 
Kruskal would have selected it instead).

• So, swap e2 for e1 (at worst keeping the cost the same)

• Repeat until the tree is identical to Kruskal’ s, where the 
cost is the same or lower than the original cost: 
contradiction!

Data Structures 
for Kruskal’s Algorithm

Pick the lowest cost edge…

findMin/deleteMin

If u and v are not already connected…
…connect u and v .

union

| E| times:

| E| times:

runtime:

Once:
Initialize heap of edges…

buildHeap

|E|  +  |E| log |E|  +  |E| ack(|E|,|V|) 

Data Structures 
for Kruskal’s Algorithm

Pick the lowest cost edge…

findMin/deleteMin

If u and v are not already connected…
…connect u and v .

union

| E| times:

| E| times:

runtime:

Once:
Initialize heap of edges…

buildHeap

|E|  +  |E| log |E|  +  |E| ack(|E|,|V|) = O(|E|log|E|) 

Prim’s Algorithm

• Can also find Minimum Spanning Trees using a 
variation of Dijkstra’s algorithm:

Pick a initial node
Until graph is connected:

Choose edge (u,v) which is of minimum cost 
among edges where u is in tree but v is not
Add (u,v) to the tree

• Same “greedy”  proof, same asymptotic 
complexity

Does Greedy Always Work?

• Consider the following problem:

Given a graph G = (V,E) and a designated subset of 
vertices S, find a minimum cost tree that includes all 
of S

• Exactly the same as a minimum spanning tree, except 
that it does not have to include ALL the vertices –
only the specified subset of vertices.
– Does Kruskal’s or Prim’s work?
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Nope!

• Greedy can fail to be optimal
– because different solutions may contain different “ non-

designated”  vertices, proof that you can covert one to 
the other doesn’ t go through

• This Minimum Steiner Tree problem has no
known solution of O(nk) for any fixed k

– NP-complete problems strike again!
– Finding a spanning tree and then pruning it a pretty 

good approximation

Some other NP-Complete 
Problems

If you see one: approximate or search (maybe A*), 
and be prepared to wait…

• Traveling Salesman – given a complete weighted 
graph, find a minimum cost simple cycle of all the 
nodes.

• Graph Coloring – can each node in a graph be 
given a color from a set of k colors, such that no 
adjacent nodes receive the same color?

A Great Book You Should Own!

• Computers and Intractability: A Guide to the 
Theory of NP-Completeness, by Michael S. Garey 
and David S. Johnson


