
1

CSE 326: Data Structures
Lecture #19

More Fun with Graphs

Henry Kautz

Winter Quarter 2002

Today

• How to Make Depth-First Search Find Optimal
Paths
– Why bother?

• Finding Connected Components
– Application to machine vision

• Finding Minimum Spanning Trees
– Yet another use for union/find

Is BFS the Hands Down Winner?

Consider finding a path from vertex S to G in an unweighted
graph where you do not have a heuristic function h(n).

• Depth-first search
– Simple to implement (implicit or explict stack)

– Does not always find shortest paths

– Must be careful to “mark” visited vertices, or you could go into an
infinite loop if there is a cycle

• Breadth-first search
– Simple to implement (queue)

– Always finds shortest paths

– Marking visited nodes can improve efficiency, but even without
doing so search is guaranteed to terminate

Space Requirements

Consider space required by the stack or queue…

• Suppose
– G is known to be at distance d from S

– Each vertex n has k out-edges

– There are no (undirected or directed) cycles

• BFS queue will grow to size kd

– Will simultaneously contain all nodes that are at
distance d (once last vertex at distance d-1 is expanded)

– For k=10, d=15, size is 1,000,000,000,000,000

DFS Space Requirements
• Consider DFS, where we limit the depth of the search

to d
– Force a backtrack at d+1

– When visiting a node n at depth d, stack will contain
• (at most) k-1 siblings of n

• parent of n

• siblings of parent of n

• grandparent of n

• siblings of grandparent of n …

• DFS queue grows at most to size dk
– For k=10, d=15, size is 150

– Compare with BFS 1,000,000,000,000,000

Conclusion

• For very large graphs – ones that are generated
“on the fly” rather than stored entirely in memory
– DFS is hugely more memory efficient, if we
know the distance to the goal vertex!

• But suppose we don’ t know d. What is the
(obvious) strategy?

2

Iterative Deepening DFS
I t er at i veDeepeni ngDFS(ver t ex s, g) {

f or (i =1; t r ue; i ++)

i f DFS(i , s , g) r et ur n;

}

/ / Al so need t o keep t r ack of pat h f ound
bool DFS(i nt l i mi t , ver t ex s, g) {

i f (s==g) r et ur n t r ue;

i f (l i mi t - - <= 0) r et ur n f al se;

f or (n i n chi l dr en(s))
i f (DFS(l i mi t , n, g)) r et ur n t r ue;

r et ur n f al se;

}

Analysis of Iterative Deepening

• Even without “marking” nodes as visited,
iterative-deepening DFS never goes into an
infinite loop
– For very large graphs, memory cost of keeping track of

visited vertices may make marking prohibitive

• Work performed with limit < actual distance to G
is wasted – but the wasted work is usually small
compared to amount of work done during the last
iteration

Asymptotic Analysis

• There are “pathological” graphs for which
iterative deepening is bad:

S G

n=d

2

1 1

Iterative Deepening DFS =

1 (1 2) (1 2 3 ...) ... ()

BFS = ()

n i

i j

j O n

O n

= =

+ + + + + + + = =��

A Better Case
Suppose each vertex n has k out-edges

– We don’ t worry about cycles – just search the vertices
over again

• Exhaustive DFS to level i reaches ki vertices –
requires time cki for some constant c

• Iterative Deepening DFS(d) =

1

()

BFS = ()

d
i d

i

d

k O k

O k

=

=� ignore low order terms!

(More) Conclusions

• To find a shortest path between two nodes in a
unweighted graph where no heuristic function is
known, use either BFS or Iterated DFS

• If the graph is large, Iterated DFS typically uses
much less memory

• If a good heuristic function is known, use A*

– But what about memory requirements for A* for very
large graphs??!!

(Final?) Conclusions & Questions

• In the worst case A* can also require a (priority)
queue of size exponential in d, the distance to the
goal vertex

• Question: Can one create an iterated, depth-first
version of A* that (typically) uses less memory?
– Yes, but you’ ll have to wait until you take CSE 473,

Introduction to Artificial Intelligence to see it!

• Related Question: How can we adapt Iterated DFS
for weighted graphs, in order to get an algorithm
that is more memory efficient than Dijkstra’s?

3

Counting Connected Components

Initialize the cost of each vertex to ∞
Num_cc = 0

While there are vertices of cost ∞ {

Pick an arbitrary such vertex S, set its cost to 0

Find paths from S

Num_cc ++ }

Using DFS

Set each vertex to “ unvisited”

Num_cc = 0

While there are unvisited vertices {

Pick an arbitrary such vertex S

Perform DFS from S, marking vertices as visited

Num_cc ++ }

Complexity = O(|V|+|E|)

Using Union / Find

Put each node in its own equivalence class

Num_cc = 0

For each edge E = <x,y>

Union(x,y)

Return number of equivalence classes

Complexity =

Using Union / Find

Put each node in its own equivalence class

Num_cc = 0

For each edge E = <x,y>

Union(x,y)

Return number of equivalence classes

Complexity = O(|V|+|E| ack(|E|,|V|))

Machine Vision: Blob Finding

4

Machine Vision: Blob Finding

1

2

3

4

5

Blob Finding

• Matrix can be considered an efficient
representation of a graph with a very regular
structure

• Cell = vertex

• Adjacent cells of same color = edge between
vertices

• Blob finding = finding connected components

Tradeoffs

• Both DFS and Union/Find approaches are
(essentially) O(|E|+|V|) = O(|E|) for binary images

• For each component, DFS (“ recursive labeling”)
can move all over the image – entire image must
be in main memory

• Better in practice: row-by-row processing
– localizes accesses to memory

– typically 1-2 orders of magnitude faster!

High-Level Blob-Labeling

• Scan through image left/right and top/bottom

• If a cell is same color as (connected to) cell to
right or below, then union them

• Give the same blob number to cells in each
equivalence class

Blob-Labeling Algorithm
Put each cell <x,y> in it’ s own equivalence class
For each cell <x,y>

if color[x,y] == color[x+1,y] then
Union(<x,y>, <x+1,y>)

if color[x,y] == color[x,y+1] then
Union(<x,y>, <x,y+1>)

label = 0
For each root <x,y>

blobnum[x,y] = ++ label;
For each cell <x,y>

blobnum[x,y] = blobnum(Find(<x,y>))

Spanning tree: a subset of the edges from a connected graph
that…
…touches all vertices in the graph (spans the graph)
…forms a tree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the least total
edge cost.

Spanning Tree

4 7

1 5

9

2

5

Applications of Minimal
Spanning Trees

• Communication networks

• VLSI design

• Transportation systems

• Good approximation to some NP-hard problems
(more later)

Kruskal’s Algorithm for
Minimum Spanning Trees

A greedy algorithm:

Initialize all vertices to unconnected

While there are still unmarked edges
Pick a lowest cost edge e = (u, v) and mark it

If u and v are not already connected, add e to the
minimum spanning tree and connect u and v

Sound familiar?
(Think maze generation.)

Kruskal’s Algorithm in Action (1/5)

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

Kruskal’s Algorithm in Action (2/5)

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

Kruskal’s Algorithm in Action (3/5)

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

Kruskal’s Algorithm in Action (4/5)

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

6

Kruskal’s Algorithm Completed (5/5)

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

Why Greediness Works
Proof by contradiction that Kruskal’ s finds a minimum

spanning tree:
• Assume another spanning tree has lower cost than

Kruskal’ s.
• Pick an edge e1 = (u, v) in that tree that’ s not in

Kruskal’ s.
• Consider the point in Kruskal’ s algorithm where u’s set

and v’s set were about to be connected. Kruskal selected
some edge to connect them: call it e2 .

• But, e2 must have at most the same cost as e1 (otherwise
Kruskal would have selected it instead).

• So, swap e2 for e1 (at worst keeping the cost the same)

• Repeat until the tree is identical to Kruskal’ s, where the
cost is the same or lower than the original cost:
contradiction!

Data Structures
for Kruskal’s Algorithm

Pick the lowest cost edge…

findMin/deleteMin

If u and v are not already connected…
…connect u and v .

union

| E| times:

| E| times:

runtime:

Once:
Initialize heap of edges…

buildHeap

|E| + |E| log |E| + |E| ack(|E|,|V|)

Data Structures
for Kruskal’s Algorithm

Pick the lowest cost edge…

findMin/deleteMin

If u and v are not already connected…
…connect u and v .

union

| E| times:

| E| times:

runtime:

Once:
Initialize heap of edges…

buildHeap

|E| + |E| log |E| + |E| ack(|E|,|V|) = O(|E|log|E|)

Prim’s Algorithm

• Can also find Minimum Spanning Trees using a
variation of Dijkstra’s algorithm:

Pick a initial node
Until graph is connected:

Choose edge (u,v) which is of minimum cost
among edges where u is in tree but v is not
Add (u,v) to the tree

• Same “greedy” proof, same asymptotic
complexity

Does Greedy Always Work?

• Consider the following problem:

Given a graph G = (V,E) and a designated subset of
vertices S, find a minimum cost tree that includes all
of S

• Exactly the same as a minimum spanning tree, except
that it does not have to include ALL the vertices –
only the specified subset of vertices.
– Does Kruskal’s or Prim’s work?

7

Nope!

• Greedy can fail to be optimal
– because different solutions may contain different “ non-

designated” vertices, proof that you can covert one to
the other doesn’ t go through

• This Minimum Steiner Tree problem has no
known solution of O(nk) for any fixed k

– NP-complete problems strike again!
– Finding a spanning tree and then pruning it a pretty

good approximation

Some other NP-Complete
Problems

If you see one: approximate or search (maybe A*),
and be prepared to wait…

• Traveling Salesman – given a complete weighted
graph, find a minimum cost simple cycle of all the
nodes.

• Graph Coloring – can each node in a graph be
given a color from a set of k colors, such that no
adjacent nodes receive the same color?

A Great Book You Should Own!

• Computers and Intractability: A Guide to the
Theory of NP-Completeness, by Michael S. Garey
and David S. Johnson

