
1

CSE 326: Data Structures
Lecture #2

Analysis of Algorithms I
(And A Little More About Linked Lists)

Henry Kautz

Winter 2002

Assignment #1
Goals of this assignment:

• Introduce the ADTs (abstract data types) for lists and
sparse vectors, motivated by an application to information
retrieval.

• Show the connection between the empirical runtime
scaling of an algorithm and formal asymptotic complexity

• Gain experience with the Unix tools g++, make, gnuplot,
csh, and awk.

• Learn how to use templates in C++.
– We will use new g++ version 3.0 compiler – does templates right!

Implementing Linked Lists in C

st r uct node{
Obj ect el ement ;
st r uct node * next ; }

Everything else is a pointer to a node!
t ypedef st uct node * Li st ;

t ypedef st r uct node * Posi t i on;

a b c ∅

(a b c)(optional
header)

L

Implementing in C++

Create separate classes for
– Node

– List (contains a pointer to the first node)

– List Iterator (specifies a position in a list; basically, just a pointer to
a node)

Pro: syntactically distinguishes uses of node pointers

Con: a lot of verbage! Also, is a position in a list really
distinct from a list?

a b c ∅

(a b c)(optional
header)

L

Structure Sharing

L = (a b c) M = (b c)

a b c ∅
L

M

•Important technique for conserving memory usage in large
lists with repeated structure

•Used in many recursive algorithms on lists

Implementing Linked Lists Using
Arrays

“ Cursor implementation” Ch 3.2.8

Can use same array to manage a second list of
unused cells

F O A R N R T

3 8 6 4 -1 10 5

Data

Next

1 7 92 3 4 5 6 8 10

First = 2

2

Polynomial ADT

A i is the coefficient of the xi-1 term:

5 + 2x + 3x2 (5 2 3)

7 + 8x (7 8)

3 + x2 (3 0 2)

Problem?

List ADT 4 + 3x2001

(4 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 3)

Sparse List Data Structure:
4 + 3x2001

4
0

3
2001

(<4 0> <2001 3>)

Addition of Two Polynomials?

10
50

3
1200

15+10x50+3x1200

15
0

p

30
50

4
100

5+30x50+4x100

5
0

q

Addition of Two Polynomials
• Similar to merging two sorted lists – one pass!

10
50

3
1200

15+10x50+3x1200

15
0

p

30
50

4
100

5+30x50+4x100

5
0

q

4
100

3
1200

40
50

20
0

r

To ADT or NOT to ADT?

• Issue: when to bypass / expand List ADT?

• Using general list operations:
r ever se(x) {

y = new l i s t ;

whi l e (! x. empt y()) {

/ * r emove 1s t el ement f r om x, i nser t i n y * /

y. i nser t _af t er _kt h(x. kt h(1) , 0) ;

x. del et e_kt h(1) ;

}

r et ur n y; }

Disadvantages?

3

Destructive LL Version

r ever se(node * x) {

l ast = NULL;

whi l e (x- >next ! = NULL) {

t mp = x- >next ;

x- >next = l ast ;

l ast = x;

x = t mp; }

r et ur n x; }

a b c ∅x

a ∅ b c x

Faster in practice?

Asymptotically faster?

Analysis of Algorithms
• Analysis of an algorithm gives insight into

how long the program runs and how much
memory it uses
– time complexity

– space complexity

• Why useful?

• Input size is indicated by a number n
– sometimes have multiple inputs, e.g. m and n

• Running time is a function of n
n, n2, n log n, 18 + 3n(log n2) + 5n3

Simplifying the Analysis

• Eliminate low order terms
4n + 5 � 4n

0.5 n log n - 2n + 7 � 0.5 n log n

2n + n3 + 3n � 2n

• Eliminate constant coefficients
4n � n

0.5 n log n � n log n

log n2 = 2 log n � log n

log3 n = (log3 2) log n � log n

Order Notation
• BIG-O T(n) = O(f(n))

Upper bound

Exist constants c and n’ such that

T(n) ≤ c f(n) for all n ≥ n’

• OMEGA T(n) = Ω (f(n))
Lower bound

Exist constants c and n’ such that

T(n) ≥ c f(n) for all n ≥ n0

• THETA T(n) =
�

(f(n))
Tight bound �

(n) = O(n) = Ω (n)

Examples

n2 + 100 n = O(n2) because
(n2 + 100 n) ≤ 2 n2 for n ≥ 10

n2 + 100 n = Ω(n2) because
(n2 + 100 n) ≥ 1 n2 for n ≥ 0

Therefore:

n2 + 100 n = θ(n2)

Notation Gotcha

• Order notation is not symmetric; write
2n2 + 4n = O(n2)

but never
O(n2) = 2n2 + 4n

right hand side is a crudification of the left

Likewise
O(n2) = O(n3)

Ω(n3) = Ω(n2)

4

Mini-Quiz

1. 5n log n = O(n2)

2. 5n log n = Ω(n2)

3. 5n log n = O(n)

4. 5n log n = Ω(n)

5. 5n log n = θ(n)

6. 5n log n = θ(n log n)

Silicon Downs

Post #1

n3 + 2n2

n0.1

n + 100n0.1

5n5

n-152n/100

82log n

Post #2

100n2 + 1000

log n

2n + 10 log n

n!

1000n15

3n7 + 7n

Race I
n3 + 2n2 100n2 + 1000vs.

Race II
n0. 1 l og nvs.

Race III
n + 100n0. 1 2n + 10 l og nvs.

Race IV
5n5 n!vs.

5

Race V
n- 152n/ 100 1000n15vs.

Race VI
82l og(n) 3n7 + 7nvs.

The Losers Win
Post #1

n3 + 2n2

n0.1

n + 100n0.1

5n5

n-152n/100

82log n

Post #2

100n2 + 1000

log n

2n + 10 log n

n!

1000n15

3n7 + 7n

Better algorithm!

O(n2)

O(log n)

TIE O(n)

O(n5)

O(n15)

O(n6)

Common Names

constant: O(1)

logarithmic: O(log n)

linear: O(n)

log-linear: O(n log n)

superlinear: O(n1+c) (c is a constant > 0)

quadratic: O(n2)

polynomial: O(nk) (k is a constant)

exponential: O(cn) (c is a constant > 1)

Analyzing Code

• C++ operations - constant time

• consecutive stmts - sum of times

• conditionals - sum of branches, condition

• loops - sum of iterations

• function calls - cost of function body

• recursive functions - solve recursive equation

Above all, use your head!

Conditionals

• Conditional
i f C t hen S1 el se S2

time ≤ time(C) + MAX(time(S1), time(S2))

6

Nested Loops

f or i = 1 t o n do

f or j = 1 t o n do

sum = sum + 1

Nested Loops

f or i = 1 t o n do

f or j = 1 t o n do

sum = sum + 1

2

1
1

1

1 nn
n

i

n

j

n

i

== ���
=

=
=

Nested Dependent Loops

f or i = 1 t o n do

f or j = i t o n do

sum = sum + 1

Nested Dependent Loops

f or i = 1 t o n do

f or j = i t o n do

sum = sum + 1

=−+=−−= �����
=====

inin
n

i

n

i

n

i

n

j

n

i 1111

)1()1(1

?

Nested Dependent Loops

f or i = 1 t o n do

f or j = i t o n do

sum = sum + 1

=−+=−−= �����
=====

inin
n

i

n

i

n

i

n

j

n

i 1111

)1()1(1

2(1) (1)
(1) ()

2 2

n n n n
n n O n

+ ++ − = =

To Do

• Finish reading Ch 1 and 2

• Start reading Ch 3

• Get started on assignment #1!

