CSE 326: Data Structures Lecture \#2
 Analysis of Algorithms I
 (And A Little More About Linked Lists)

Henry Kautz
Winter 2002

Assignment \#1

Goals of this assignment.

- Introduce the ADTs (abstract data types) for lists and sparse vectors, motivated by an application to information retrieval.
- Show the connection between the empirical runtime scaling of an algorithm and formal asymptotic complexity
- Gain experience with the Unix tools g++, make, gnuplot, csh, and awk.
- Learn how to use templates in C++.
- We will use new g++ version 3.0 compiler - does templates right!

Structure Sharing

-Important technique for conserving memory usage in large lists with repeated structure
-Used in many recursive algorithms on lists

Implementing Linked Lists Using Arrays
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

	Data	F	O	A	R	N		R		T										
Next													3	8	6	4	-1		10	
:---	:---	:---	:---	:---	:---	:---	:---	:---												

First $=2$
"Cursor implementation" Ch 3.2.8
Can use same array to manage a second list of unused cells

促

Sparse List Data Structure:
$4+3 x^{2001}$
(<4 0> <2001 3>)

Addition of Two Polynomials?

Addition of Two Polynomials

- Similar to merging two sorted lists - one pass! To ADT or NOT to ADT? $15+10 x^{50}+3 x^{1200}$

Issue: when to bypass / expand List ADT?

- Using general list operations:
reverse (x) \{
$y=$ new list;
while (! x.empty())
/* remove $1^{\text {st }}$ element from x, insert in y */
y.insert_after_kth (x.kth(1), 0);
x. delete_kth (1) ;
,
return y; f
Disadvantages?

Analysis of Algorithms

- Analysis of an algorithm gives insight into how long the program runs and how much memory it uses
- time complexity
- space complexity
- Why useful?
- Input size is indicated by a number n
- sometimes have multiple inputs, e.g. m and n
- Running time is a function of n

$$
n, \quad n^{2}, \quad n \log n, \quad 18+3 n\left(\log n^{2}\right)+5 n^{3}
$$

Simplifying the Analysis

- Eliminate low order terms
$4 \mathrm{n}+5 \Rightarrow 4 \mathrm{n}$
$0.5 n \log n-2 n+7 \Rightarrow 0.5 n \log n$
$2^{n}+n^{3}+3 n \Rightarrow 2^{n}$
- Eliminate constant coefficients
$4 \mathrm{n} \Rightarrow \mathrm{n}$
$0.5 n \log n \Rightarrow n \log n$
$\log n^{2}=2 \log n \Rightarrow \log n$
$\log _{3} n=\left(\log _{3} 2\right) \log n \Rightarrow \log n$

Order Notation

- BIG-O $\quad \mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n}))$

Upper bound
Exist constants c and n ' such that
$T(n) \leq c f(n)$ for all $n \geq n$

- OMEGA $\mathrm{T}(\mathrm{n})=\Omega(\mathrm{f}(\mathrm{n}))$

Lower bound
Exist constants c and n ' such that $T(n) \geq c f(n)$ for all $n \geq n_{0}$

- THETA $T(n)=\theta(f(n))$

Tight bound
$\theta(\mathrm{n})=\mathrm{O}(\mathrm{n})=\Omega(\mathrm{n})$

Examples

$\mathrm{n}^{2}+100 \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$ because

$$
\left(n^{2}+100 n\right) \leq 2 n^{2} \quad \text { for } n \geq 10
$$

$\mathrm{n}^{2}+100 \mathrm{n}=\Omega\left(\mathrm{n}^{2}\right)$ because
$\left(\mathrm{n}^{2}+100 \mathrm{n}\right) \geq 1 \mathrm{n}^{2}$ for $\mathrm{n} \geq 0$
Therefore:
$n^{2}+100 n=\theta\left(n^{2}\right)$

Notation Gotcha

- Order notation is not symmetric; write

$$
2 \mathrm{n}^{2}+4 \mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)
$$

but never

$$
\mathrm{O}\left(\mathrm{n}^{2}\right)=2 \mathrm{n}^{2}+4 \mathrm{n}
$$

right hand side is a crudification of the left

Likewise

$$
\begin{aligned}
\mathrm{O}\left(\mathrm{n}^{2}\right) & =\mathrm{O}\left(\mathrm{n}^{3}\right) \\
\Omega\left(\mathrm{n}^{3}\right) & =\Omega\left(\mathrm{n}^{2}\right)
\end{aligned}
$$

Mini-Quiz	
1.	$5 n \log n=\mathrm{O}\left(n^{2}\right)$
2.	$5 n \log n=\Omega\left(n^{2}\right)$
3. $5 n \log n=\mathrm{O}(n)$	
4. $5 n \log n=\Omega(n)$	
5. $5 n \log n=\theta(n)$	
6. $5 n \log n=\theta(n \log n)$	

Silicon Downs	
Post \#1	Post \#2
$\mathrm{n}^{3}+2 \mathrm{n}^{2}$	$100 \mathrm{n}^{2}+1000$
$\mathrm{n}^{0.1}$	$\log \mathrm{n}$
$\mathrm{n}+100 \mathrm{n}^{0.1}$	$2 \mathrm{n}+10 \log \mathrm{n}$
$5 \mathrm{n}^{5}$	$\mathrm{n}!$
$\mathrm{n}^{-152^{n / 100}}$	$1000 \mathrm{n}^{15}$
$8^{2 \log \mathrm{n}}$	$3 \mathrm{n}^{7}+7 \mathrm{n}$

The Losers Win		
Post \#1	Post +2	Better algorithm!
$\mathrm{n}^{3}+2 \mathrm{n}^{2}$	$100 \mathrm{n}^{2}+1000$	$\mathrm{O} \mathrm{n}^{2}$)
$\mathrm{n}^{0.1}$	$\log \mathrm{n}$	O(log n)
$\mathrm{n}+100 \mathrm{n}^{0.1}$	$2 \mathrm{n}+10 \log \mathrm{n}$	TIE O(n)
$5 \mathrm{n}^{5}$	n !	$\mathrm{O}\left(\mathrm{n}^{5}\right)$
$\mathrm{n}^{1 / 52^{2} / 100}$	$1000{ }^{15}$	$\mathrm{O}\left(\mathrm{n}^{15}\right)$
$8^{2 l o g n}$	$3 \mathrm{n}^{7}+7 \mathrm{n}$	$\mathrm{O} \mathrm{n}^{6}$)

Common Names

constant:	$\mathrm{O}(1)$	
logarithmic:	$\mathrm{O}(\log \mathrm{n})$	
linear:	$\mathrm{O}(\mathrm{n})$	
log-linear:	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	
superlinear:	$\mathrm{O}\left(\mathrm{n}^{1+c}\right)$	$(\mathrm{c}$ is a constant $>0)$
quadratic:	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	
polynomial:	$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$	$(\mathrm{k}$ is a constant $)$
exponential:	$\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$	$(\mathrm{c}$ is a constant $>1)$

Analyzing Code

- C++ operations - constant time
- consecutive stmts - sum of times
- conditionals - sum of branches, condition
- loops - sum of iterations
- function calls - cost of function body
- recursive functions - solve recursive equation

Above all, use your head!

Conditionals

- Conditional
if C then S_{1} else S_{2}
time $\leq \operatorname{time}(\mathrm{C})+\operatorname{MAX}(\operatorname{time}(\mathrm{S} 1), \operatorname{time}(\mathrm{S} 2))$

Nested Dependent Loops

for $i=1$ to n do
for $j=i$ to n do
sum $=$ sum +1
Finish reading Ch 1 and 2

- Start reading Ch 3
- Get started on assignment \#1!

