CSE 326: Data Structures

 Lecture \#22

Mergeable Heaps

Henry Kautz
Winter Quarter 2002

Summary of Heap ADT Analysis

- Consider a heap of N nodes
- Space needed: $\mathrm{O}(\mathrm{N})$
- Actually, O(MaxSize) where MaxSize is the size of the array
- Pointer-based implementation: pointers for children and parent - Total space $=3 \mathrm{~N}+1$ (3 pointers per node +1 for size)
- FindMin: $O(1)$ time; DeleteMin and Insert: $O(\log N)$ time
- BuildHeap from N inputs: What is the run time?
- N Insert operations $=\mathrm{O}(\mathrm{N} \log \mathrm{N})$
- $\mathrm{O}(\mathrm{N})$: Treat input array as a heap and fix it using percolate down
- Thanks, Floyd!

Other Heap Operations

- Find and FindMax: $\mathrm{O}(\mathrm{N})$
- DecreaseKey(P, $\Delta, \mathrm{H})$: Subtract Δ from current key value at position P and percolate up. Running Time: $\mathrm{O}(\log \mathrm{N})$
- IncreaseKey(P, $\Delta, \mathrm{H})$: Add Δ to current key value at P and percolate down. Running Time: $\mathrm{O}(\log \mathrm{N})$
- E.g. Schedulers in OS often decrease priority of CPU-hogging jobs
- Delete(P,H): Use DecreaseKey (to 0) followed by DeleteMin. Running Time: $\mathrm{O}(\log \mathrm{N})$
- E.g. Delete a job waiting in queue that has been preemptively terminated by user

But What About...

- Merge(H1,H2): Merge two heaps H1 and H2 of size $\mathrm{O}(\mathrm{N})$.
- E.g. Combine queues from two different sources to run on one CPU.

1. Can do $O(N)$ Insert operations: $O(N \log N)$ time
2. Better: Copy H 2 at the end of H 1 (assuming array implementation) and use Floyd's Method for BuildHeap.
Running Time: $\mathrm{O}(\mathrm{N})$
Can we do even better? (i.e. Merge in $\mathrm{O}(\log \mathrm{N})$ time?)

Binomial Queues

- Binomial queues support all three priority queue operations Merge, Insert and DeleteMin in $\mathrm{O}(\log \mathrm{N})$ time
- Idea: Maintain a collection of heap-ordered trees - Forest of binomial trees
- Recursive Definition of Binomial Tree (based on height k):
- Only one binomial tree for a given height
- Binomial tree of height $0=$ single root node
- Binomial tree of height $k=B_{k}=$ Attach B_{k-1} to root of another $\mathrm{B}_{\mathrm{k}-1}$

Building a Binomial Tree

- To construct a binomial tree B_{k} of height k :

1. Take the binomial tree B_{k-1} of height $k-1$
2. Place another copy of B_{k-1} one level below the first
3. Attach the root nodes

- Binomial tree of height k has exactly 2^{k} nodes (by induction)
$\begin{array}{llll}\mathrm{B}_{0} & \mathrm{~B}_{1} & \mathrm{~B}_{2} & \mathrm{~B}_{3}\end{array}$

Building a Binomial Tree

- To construct a binomial tree B_{k} of height k :

1. Take the binomial tree B_{k-1} of height $k-1$
2. Place another copy of B_{k-1} one level below the first
3. Attach the root nodes

- Binomial tree of height k has exactly 2^{k} nodes (by induction)

Building a Binomial Tree

- To construct a binomial tree B_{k} of height k :

1. Take the binomial tree B_{k-1} of height $k-1$
2. Place another copy of B_{k-1} one level below the first
3. Attach the root nodes

- Binomial tree of height k has exactly 2^{k} nodes (by induction)

Building a Binomial Tree

- To construct a binomial tree B_{k} of height k :

1. Take the binomial tree B_{k-1} of height $k-1$
2. Place another copy of B_{k-1} one level below the first
3. Attach the root nodes

- Binomial tree of height k has exactly 2^{k} nodes (by induction)
$\mathrm{B}_{0} \quad \mathrm{~B}_{1}$
B_{2}
B_{3}
\bigcirc

Building a Binomial Tree

- To construct a binomial tree B_{k} of height k :

1. Take the binomial tree B_{k-1} of height $k-1$
2. Place another copy of B_{k-1} one level below the first
3. Attach the root nodes

- Binomial tree of height k has exactly 2^{k} nodes (by induction)
$\mathrm{B}_{0} \quad \mathrm{~B}_{1}$
B_{2}
B_{3}

Building a Binomial Tree

- To construct a binomial tree B_{k} of height k :

1. Take the binomial tree B_{k-1} of height $k-1$
2. Place another copy of B_{k-1} one level below the first
3. Attach the root nodes

- Binomial tree of height k has exactly 2^{k} nodes (by induction)

Why Binomial?

- Why are these trees called binomial?
- Hint: how many nodes at depth d?

Definition of Binomial Queues

Binomial Queue = "forest" of heap-ordered binomial trees

Binomial Queues: Merge

- Main Idea: Merge two binomial queues by merging individual binomial trees
- Since B_{k+1} is just two B_{k} 's attached together, merging trees is easy
- Steps for creating new queue by merging:

1. Start with B_{k} for smallest k in either queue.
2. If only one B_{k}, add B_{k} to new queue and go to next k.
3. Merge two B_{k} 's to get new B_{k+1} by making larger root the child of smaller root. Go to step 2 with $\mathrm{k}=$ $\mathrm{k}+1$.

Why Binomial?

- Why are these trees called binomial?
- Hint: how many nodes at depth d?

Number of nodes at different depths d for $B_{k}=$ [1], [111], [11 211$],\left[\begin{array}{lll}1 & 3 & 3\end{array} 1\right], \ldots$
Binomial coefficients of $(a+b)^{k}=k!/((k-d)!d!)$

Binomial Queue Properties

Suppose you are given a binomial queue of N nodes

1. There is a unique set of binomial trees for N nodes
2. What is the maximum number of trees that can be in an N -node queue?
-1 node $\rightarrow 1$ tree $\mathrm{B}_{0} ; 2$ nodes $\rightarrow 1$ tree $\mathrm{B}_{1} ; 3$ nodes $\rightarrow 2$ trees B_{0} and $\mathrm{B}_{1} ; 7$ nodes $\rightarrow 3$ trees $\mathrm{B}_{0}, \mathrm{~B}_{1}$ and $\mathrm{B}_{2} \ldots$

- Trees $B_{0}, B_{1}, \ldots, B_{k}$ can store up to $2^{0}+2^{1}+\ldots+2^{k}=$ $2^{\mathrm{k}+1}-1$ nodes $=\mathrm{N}$.
- Maximum is when all trees are used. So, solve for $(k+1)$.
- Number of trees is $\leq \log (\mathrm{N}+1)=\mathrm{O}(\log \mathrm{N})$

Example: Binomial Queue Merge

- Merge H1 and H2

H1:

H2:
(21)

Example: Binomial Queue Merge

- Merge H1 and H2
H2:

Example: Binomial Queue Merge

- Merge H 1 and H 2

H1:

(6)

Example: Binomial Queue Merge

- Merge H 1 and H 2

H1:

(6)

Example: Binomial Queue Merge

- Merge H1 and H2

H1:

Example: Binomial Queue Merge

- Merge H1 and H2

H1:
H2:

Binomial Queues: Merge and Insert

- What is the run time for Merge of two $\mathrm{O}(\mathrm{N})$ queues?
- How would you insert a new item into the queue?

Insert 1,2,..., 7

Insert $1,2, \ldots, 7$

Insert $1,2, \ldots, 7$

Binomial Queues: DeleteMin

- Steps:

1. Find tree B_{k} with the smallest root
2. Remove B_{k} from the queue
3. Delete root of B_{k} (return this value); You now have a new queue made up of the forest $B_{0}, B_{1}, \ldots, B_{k-1}$
4. Merge this queue with remainder of the original (from step 2)

- Run time analysis: Step 1 is $\mathrm{O}(\log \mathrm{N})$, step 2 and 3 are $\mathrm{O}(1)$, and step 4 is $\mathrm{O}(\log \mathrm{N})$. Total time $=\mathrm{O}(\log \mathrm{N})$
- Example: Insert $1,2, \ldots, 7$ into empty queue and DeleteMin

Insert 1,2,..., 7

Implementation of Binomial Queues

- Need to be able to scan through all trees, and given two binomial queues find trees that are same size
- Use array of pointers to root nodes, sorted by size
- Since is only of length $\log (\mathrm{N})$, don't have to worry about cost of copying this array
- At each node, keep track of the size of the (sub) tree rooted at that node
- Want to merge by just setting pointers
- Need pointer-based implementation of heaps
- DeleteMin requires fast access to all subtrees of root - Use First-Child/Next-Sibling representation of trees

Other Mergeable Priority Queues:
Leftist and Skew Heaps

- Leftist Heaps: Binary heap-ordered trees with left subtrees always "longer" than right subtrees
- Main idea: Recursively work on right path for Merge/Insert/DeleteMin - Right path is always short \rightarrow has $\mathrm{O}(\log \mathrm{N})$ nodes
- Merge, Insert, DeleteMin all have $\mathrm{O}(\log \mathrm{N})$ running time (see text)
- Skew Heaps: Self-adjusting version of leftist heaps (a la splay trees)
- Do not actually keep track of path lengths
- Adjust tree by swapping children during each merge
- $\mathrm{O}(\log \mathrm{N})$ amortized time per operation for a sequence of M operations
- We will skip details... just recognize the names as mergeable heaps!

Coming Up

- Some random randomized data structures
- Treaps
- Skip Lists
- FOR MONDAY: Read section on randomized data structures in Weiss. Be prepared, if called on, to explain in your own words why we might want to use a data structure that incorporates randomness!

