
1

CSE 326: Data Structures
Lecture #22

Mergeable Heaps
Henry Kautz

Winter Quarter 2002

Summary of Heap ADT Analysis
• Consider a heap of N nodes

• Space needed: O(N)
– Actually, O(MaxSize) where MaxSize is the size of the array

– Pointer-based implementation: pointers for children and parent
• Total space = 3N + 1 (3 pointers per node + 1 for size)

• FindMin: O(1) time; DeleteMin and Insert: O(log N) time

• BuildHeap from N inputs: What is the run time?
– N Insert operations = O(N log N)

– O(N): Treat input array as a heap
and fix it using percolate down

• Thanks, Floyd!

Other Heap Operations

• Find and FindMax: O(N)

• DecreaseKey(P,∆,H): Subtract ∆ from current key value at
position P and percolate up. Running Time: O(log N)

• IncreaseKey(P,∆,H): Add ∆ to current key value at P and
percolate down. Running Time: O(log N)
– E.g. Schedulers in OS often decrease priority of CPU-hogging jobs

• Delete(P,H): Use DecreaseKey (to 0) followed by
DeleteMin. Running Time: O(log N)
– E.g. Delete a job waiting in queue that has been preemptively

terminated by user

But What About...

• Merge(H1,H2): Merge two heaps H1 and H2 of size
O(N).
– E.g. Combine queues from two different sources to run on one

CPU.

1. Can do O(N) Insert operations: O(N log N) time

2. Better: Copy H2 at the end of H1 (assuming array
implementation) and use Floyd’s Method for
BuildHeap.

Running Time: O(N)

Can we do even better? (i.e. Merge in O(log N) time?)

Binomial Queues

• Binomial queues support all three priority queue operations
Merge, Insert and DeleteMin in O(log N) time

• Idea: Maintain a collection of heap-ordered trees

– Forest of binomial trees

• Recursive Definition of Binomial Tree (based on height k):

– Only one binomial tree for a given height

– Binomial tree of height 0 = single root node

– Binomial tree of height k = Bk = Attach Bk-1 to root of
another Bk-1

Building a Binomial Tree
• To construct a binomial tree Bk of height k:

1. Take the binomial tree Bk-1 of height k-1

2. Place another copy of Bk-1 one level below the first

3. Attach the root nodes

• Binomial tree of height k has exactly 2k nodes (by induction)

B0 B1 B2 B3

2

Building a Binomial Tree
• To construct a binomial tree Bk of height k:

1. Take the binomial tree Bk-1 of height k-1

2. Place another copy of Bk-1 one level below the first

3. Attach the root nodes

• Binomial tree of height k has exactly 2k nodes (by induction)

B0 B1 B2 B3

Building a Binomial Tree
• To construct a binomial tree Bk of height k:

1. Take the binomial tree Bk-1 of height k-1

2. Place another copy of Bk-1 one level below the first

3. Attach the root nodes

• Binomial tree of height k has exactly 2k nodes (by induction)

B0 B1 B2 B3

Building a Binomial Tree
• To construct a binomial tree Bk of height k:

1. Take the binomial tree Bk-1 of height k-1

2. Place another copy of Bk-1 one level below the first

3. Attach the root nodes

• Binomial tree of height k has exactly 2k nodes (by induction)

B0 B1 B2 B3

Building a Binomial Tree
• To construct a binomial tree Bk of height k:

1. Take the binomial tree Bk-1 of height k-1

2. Place another copy of Bk-1 one level below the first

3. Attach the root nodes

• Binomial tree of height k has exactly 2k nodes (by induction)

B0 B1 B2 B3

Building a Binomial Tree
• To construct a binomial tree Bk of height k:

1. Take the binomial tree Bk-1 of height k-1

2. Place another copy of Bk-1 one level below the first

3. Attach the root nodes

• Binomial tree of height k has exactly 2k nodes (by induction)

B0 B1 B2 B3

Building a Binomial Tree
• To construct a binomial tree Bk of height k:

1. Take the binomial tree Bk-1 of height k-1

2. Place another copy of Bk-1 one level below the first

3. Attach the root nodes

• Binomial tree of height k has exactly 2k nodes (by induction)

B0 B1 B2 B3

3

Why Binomial?
• Why are these trees called binomial?

– Hint: how many nodes at depth d?

B0 B1 B2 B3

Why Binomial?
• Why are these trees called binomial?

– Hint: how many nodes at depth d?
Number of nodes at different depths d for Bk =

[1], [1 1], [1 2 1], [1 3 3 1], …
Binomial coefficients of (a + b)k = k!/((k-d)!d!)

B0 B1 B2 B3

Definition of Binomial Queues

3

Binomial Queue = “ forest” of heap-ordered binomial trees

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

B0 B2 B0 B1 B3

Binomial queue H1
5 elements = 101 base 2
� B2 B0

Binomial queue H2
11 elements = 1011 base 2
� B3 B1 B0

Binomial Queue Properties
Suppose you are given a binomial queue of N nodes

1. There is a unique set of binomial trees for N nodes

2. What is the maximum number of trees that can be in
an N-node queue?
– 1 node � 1 tree B0; 2 nodes � 1 tree B1; 3 nodes � 2 trees

B0 and B1; 7 nodes � 3 trees B0, B1 and B2 …

– Trees B0, B1, …, Bk can store up to 20 + 21 + … + 2k =
2k+1 – 1 nodes = N.

– Maximum is when all trees are used. So, solve for (k+1).

– Number of trees is ≤ log(N+1) = O(log N)

Binomial Queues: Merge

• Main Idea: Merge two binomial queues by merging
individual binomial trees
– Since Bk+1 is just two Bk’ s attached together, merging

trees is easy

• Steps for creating new queue by merging:
1. Start with Bk for smallest k in either queue.
2. If only one Bk, add Bk to new queue and go to next

k.
3. Merge two Bk’ s to get new Bk+1 by making larger

root the child of smaller root. Go to step 2 with k =
k + 1.

Example: Binomial Queue Merge

• Merge H1 and H2

3 1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

4

Example: Binomial Queue Merge

• Merge H1 and H2

3 1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

Example: Binomial Queue Merge

• Merge H1 and H2

3 1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

Example: Binomial Queue Merge

• Merge H1 and H2

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7
21

H1: H2:

Example: Binomial Queue Merge

• Merge H1 and H2

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7
21

H1: H2:

Example: Binomial Queue Merge

• Merge H1 and H2

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

Example: Binomial Queue Merge

• Merge H1 and H2

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

5

Example: Binomial Queue Merge

• Merge H1 and H2

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

Example: Binomial Queue Merge

• Merge H1 and H2

3

1

7

-1

2 1 3

8 11 5

6

5

9 6

7

21

H1: H2:

Binomial Queues: Merge and
Insert

• What is the run time for Merge of two O(N)
queues?

• How would you insert a new item into the queue?

Binomial Queues: Merge and
Insert

• What is the run time for Merge of two O(N)
queues?
– O(number of trees) = O(log N)

• How would you insert a new item into the queue?
– Create a single node queue B0 with new item and

merge with existing queue
– Again, O(log N) time

• Example: Insert 1, 2, 3, …,7 into an empty
binomial queue

Insert 1,2,…,7

1

Insert 1,2,…,7

1

2

6

Insert 1,2,…,7

1

2

3

Insert 1,2,…,7

1

2

3

4

Insert 1,2,…,7

1

2 3

4

Insert 1,2,…,7

1

2 3

4

5

Insert 1,2,…,7

1

2 3

4

5

6

Insert 1,2,…,7

1

2 3

4

5

6

7

7

Binomial Queues: DeleteMin

• Steps:
1. Find tree Bk with the smallest root

2. Remove Bk from the queue

3. Delete root of Bk (return this value); You now have a
new queue made up of the forest B0, B1, …, Bk-1

4. Merge this queue with remainder of the original (from
step 2)

• Run time analysis: Step 1 is O(log N), step 2 and 3 are
O(1), and step 4 is O(log N). Total time = O(log N)

• Example: Insert 1, 2, …, 7 into empty queue and
DeleteMin

Insert 1,2,…,7

1

2 3

4

5

6

7

DeleteMin

2 3

4

5

6

7

Merge

2 3

4

5

6

7

Merge

2 3

4

5

6

7

Merge

2

3

4

5

6

7

8

Merge

2

3

4

5

6

7

DONE!

Implementation of Binomial Queues

• Need to be able to scan through all trees, and given
two binomial queues find trees that are same size
– Use array of pointers to root nodes, sorted by size
– Since is only of length log(N), don’ t have to worry

about cost of copying this array
– At each node, keep track of the size of the (sub) tree

rooted at that node

• Want to merge by just setting pointers
– Need pointer-based implementation of heaps

• DeleteMin requires fast access to all subtrees of root
– Use First-Child/Next-Sibling representation of trees

Other Mergeable Priority Queues:
Leftist and Skew Heaps

• Leftist Heaps: Binary heap-ordered trees with left subtrees
always “ longer” than right subtrees
– Main idea: Recursively work on right path for Merge/Insert/DeleteMin
– Right path is always short � has O(log N) nodes
– Merge, Insert, DeleteMin all have O(log N) running time (see text)

• Skew Heaps: Self-adjusting version of leftist heaps (a la splay
trees)
– Do not actually keep track of path lengths
– Adjust tree by swapping children during each merge
– O(log N) amortized time per operation for a sequence of M operations

• We will skip details… just recognize the names as mergeable
heaps!

Coming Up

• Some random randomized data structures
– Treaps

– Skip Lists

– FOR MONDAY: Read section on randomized data
structures in Weiss. Be prepared, if called on, to
explain in your own words why we might want to use a
data structure that incorporates randomness!

