

Randomized Data Structures

- We've seen many data structures with good average case performance on random inputs, but bad behavior on particular inputs
- Binary Search Trees
- Instead of randomizing the input (since we cannot!), consider randomizing the data structure
- No bad inputs, just unlucky random numbers
- Expected case good behavior on any input

Treap Dictionary Data Structure

- Treaps have the binary
heap in yellow; search tree in blue search tree
- binary tree property
- search tree property
- Treaps also have the heap-order property!
- randomly assigned priorities

Legend:

What's the Difference?

- Deterministic with good average time
- If your application happens to always use the "bad" case, you are in big trouble!
- Randomized with good expected time
- Once in a while you will have an expensive operation, but no inputs can make this happen all the time
- Kind of like an insurance policy for your algorithm!

You're in good hands.

Treap Insert

- Choose a random priority
- Insert as in normal BST
- Rotate up until heap order is restored (maintaining BST property while rotating)

Other Randomized Data Structures \& Algorithms

- Randomized skip list
- cross between a linked list and a binary search tree
- $\mathrm{O}(\log n)$ expected time for finds, and then can simply follow links to do range queries
- Randomized QuickSort
- just choose pivot position randomly
- expected $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time for any input

Treap Summary

- Implements Dictionary ADT
- insert in expected $O(\log n)$ time
- delete in expected $O(\log n)$ time
- find in expected $O(\log n)$ time
- but worst case $\mathrm{O}(\mathrm{n})$
- Memory use
- O(1) per node
- about the cost of AVL trees
- Very simple to implement, little overhead - less than AVL trees

Randomized Primality Testing

- No known polynomial time algorithm for primality testing
- but does not appear to be NP-complete either - in between?
- Best known algorithm:

1. Guess a random number $0<\mathrm{A}<\mathrm{N}$
2. If $\left(\mathrm{A}^{\mathrm{N}-1} \% \mathrm{~N}\right) \neq 1$, then N is not prime
3. Otherwise, 75% chance N is prime

- or is a "Carmichael number" - a slightly more complex test rules out this case

4. Repeat to increase confidence in the answer

Randomized Search Algorithms

- Finding a goal node in very, very large graphs using DFS, BFS, and even A* (using known heuristic functions) is often too slow
- Alternative: random walk through the graph

Demo: N-Queens

DFS
(over vertices where no queens attack each other) versus
Random walk
(biased to prefer moving to vertices with fewer attacks between queens)

N-Queens Problem

- Place N queens on an N by N chessboard so that no two queens can attack each other
- Graph search formulation:
- Each way of placing from 0 to N queens on the chessboard is a vertex
- Edge between vertices that differ by adding or removing one queen
- Start vertex: empty board
- Goal vertex: any one with N non-attacking queens (there are many such goals)

Random Walk - Complexity?

- Random walk - also known as an "absorbing Markov chain", "simulated annealing", the "Metropolis algorithm" (Metropolis 1958)
- Can often prove that if you run long enough will reach a goal state - but may take exponential time
- In some cases can prove that with high probability a goal is reached in polynomial time
- e.g., 2-SAT, Papadimitriou 1997
- Widely used for real-world problems where actual complexity is unknown - scheduling, optimization
- N-Queens - probably polynomial, but no one has tried to prove formal bound

Traveling Salesman

Recall the Traveling Salesperson (TSP) Problem: Given a fully connected, weighted_graph $\mathrm{G}=$ (V, E), is there a cycle that visits all vertices exactly once and has total cost $\leq \mathrm{K}$?

- NP-complete: reduction from Hamiltonian circuit
- Occurs in many real-world transportation and design problems
- Randomized simulated annealing algorithm demo

Final Review

("We've covered way too much in this course... What do I really need to know?")

Be Sure to Bring

- 1 page of notes
- A hand calculator
- Several \#2 pencils

Final Review: What you need to

- Basic Math
- Logs, exponents, summation of series
- Proof by induction
$\sum_{i=1}^{N} i=\frac{N(N+1)}{2}$
$\sum_{i=0}^{N} A^{i}=\frac{A^{N+1}-1}{A-1}$
- Asymptotic Analysis

$$
\sum_{i=0}^{N} A^{i}=\frac{A^{N+1}-1}{A-1}
$$

- Big-oh, Theta and Omega
- Know the definitions and how to show $f(N)$ is big$\mathrm{O} /$ Theta/Omega of $(\mathrm{g}(\mathrm{N}))$
- How to estimate Running Time of code fragments - E.g. nested "for" loops
- Recurrence Relations
- Deriving recurrence relation for run time of a recursive function
- Solving recurrence relations by expansion to get run time

Final Review: What you need to know

- Binary Search Trees

- How to do Find, Insert, Delete
- Bad worst case performance - could take up to $\mathrm{O}(\mathrm{N})$ time
- AVL trees
- Balance factor is $+1,0,-1$
- Know single and double rotations to keep tree balanced
- All operations are $\mathrm{O}(\log \mathrm{N})$ worst case time
- Splay trees - good amortized performance
- A single operation may take $\mathrm{O}(\mathrm{N})$ time but in a sequence of operations, average time per operation is $\mathrm{O}(\log \mathrm{N})$
- Every Find, Insert, Delete causes accessed node to be moved to the root
- Know how to zig-zig, zig-zag, etc. to "bubble" node to top - B-trees: Know basic idea behind Insert/Delete

Final Review: What you need to know

- Sorting Algorithms: Know run times and how they work
- Elementary sorting algorithms and their run time - Selection sort
- Heapsort - based on binary heaps (max-heaps)
- BuildHeap and repeated DeleteMax's
- Mergesort - recursive divide-and-conquer, uses extra array
- Quicksort - recursive divide-and-conquer, Partition in-place
- fastest in practice, but $\mathrm{O}\left(\mathrm{N}^{2}\right)$ worst case time
- Pivot selection - median-of-three works best
- Know which of these are stable and in-place
- Lower bound on sorting, bucket sort, and radix sort

Final Review: What you need to

 know- Disioint Sets and Union-Find
- Up-trees and their array-based implementation
- Know how Union-by-size and Path compression work
- No need to know run time analysis - just know the result:
- Sequence of M operations with Union-by-size and P.C. is Θ (M $\alpha(\mathrm{M}, \mathrm{N}))$ - just a little more than $\Theta(1)$ amortized time per op
- Graph Algorithms
- Adjacency matrix versus adjacency list representation of graphs
- Know how to Topological sort in $\mathrm{O}(|V|+|E|)$ time using a queue
- Breadth First Search (BFS) for unweighted shortest path

Final Review: What you need to know

- Multidimensional Search Trees
- k-d Trees - find and range queries
- Depth logarithmic in number of nodes
- Quad trees - find and range queries
- Depth logarithmic in inverse of minimal distance between nodes
- But higher branching fractor means shorter depth if points are well spread out (log base 4 instead of log base 2)
- Randomized Algorithms
- expected time vs. average time vs. amortized time
- Treaps, randomized Quicksort, primality testing

