
1

1

CSE 326: Data Structures
Lecture #23

Data Structures
Henry Kautz

Winter Quarter 2002

2

Pick a Card

Warning! The Queen of Spades
is a very unlucky card!

3

Randomized Data Structures

• We’ve seen many data structures with good
average case performance on random inputs, but
bad behavior on particular inputs
– Binary Search Trees

• Instead of randomizing the input (since we
cannot!), consider randomizing the data structure
– No bad inputs, just unlucky random numbers

– Expected case good behavior on any input

4

What’s the Difference?

• Deterministic with good average time
– If your application happens to always use the “bad” case,

you are in big trouble!

• Randomized with good expected time
– Once in a while you will have an expensive operation, but

no inputs can make this happen all the time

• Kind of like an
insurance policy

for your algorithm!

5

Treap Dictionary Data Structure

• Treaps have the binary
search tree
– binary tree property

– search tree property

• Treaps also have the
heap-order property!
– randomly assigned

priorities

15
12

10
30

9
15

7
8

4
18

6
7

2
9

heap in yellow; search tree in blue

priority
key

Legend:

6

Treap Insert
• Choose a random priority

• Insert as in normal BST

• Rotate up until heap order is restored (maintaining
BST property while rotating)

6
7

insert(15)

7
8

2
9

14
12

6
7

7
8

2
9

14
12

9
15

6
7

7
8

2
9

9
15

14
12

2

7

Tree + Heap… Why Bother?

Insert data in sorted order into a treap; what shape
tree comes out?

6
7

insert(7)

6
7

insert(8)

7
8

6
7

insert(9)

7
8

2
9

6
7

insert(12)

7
8

2
9

15
12

priority
key

Legend:

8

Treap Delete

• Find the key

• Increase its value to ∞
• Rotate it to the fringe

• Snip it off

delete(9)

6
7

7
8

2� ∞
9

9
15

15
12

7
8

6
7

∞
9

9
15

15
12

rotate left

7
8

6
7

∞
9

9
1515

12

rotate left

rotate right

9

Treap Delete, cont.

7
8

6
7

∞
9

9
1515

12

rotate right

7
8

6
7

∞
9

9
15

15
12

rotate right

7
8

6
7

∞
9

9
15

15
12

snip!

10

Treap Summary

• Implements Dictionary ADT
– insert in expected O(log n) time

– delete in expected O(log n) time

– find in expected O(log n) time

– but worst case O(n)

• Memory use
– O(1) per node

– about the cost of AVL trees

• Very simple to implement, little overhead – less
than AVL trees

11

Other Randomized Data
Structures & Algorithms

• Randomized skip list
– cross between a linked list and a binary search tree

– O(log n) expected time for finds, and then can simply
follow links to do range queries

• Randomized QuickSort
– just choose pivot position randomly

– expected O(n log n) time for any input

12

Randomized Primality Testing

• No known polynomial time algorithm for primality
testing
– but does not appear to be NP-complete either – in

between?

• Best known algorithm:
1. Guess a random number 0 < A < N

2. If (AN-1 % N) ≠ 1, then N is not prime

3. Otherwise, 75% chance N is prime
– or is a “Carmichael number” – a slightly more complex test

rules out this case

4. Repeat to increase confidence in the answer

3

13

Randomized Search Algorithms

• Finding a goal node in very, very large graphs
using DFS, BFS, and even A* (using known
heuristic functions) is often too slow

• Alternative: random walk through the graph

14

N-Queens Problem

• Place N queens on an N by N chessboard so that
no two queens can attack each other

• Graph search formulation:
– Each way of placing from 0 to N queens on the

chessboard is a vertex

– Edge between vertices that differ by adding or removing
one queen

– Start vertex: empty board

– Goal vertex: any one with N non-attacking queens (there
are many such goals)

15

Demo: N-Queens

DFS
(over vertices where no queens attack each other)

versus

Random walk

(biased to prefer moving to vertices with fewer
attacks between queens)

16

Random Walk – Complexity?

• Random walk – also known as an “absorbing
Markov chain” , “simulated annealing” , the
“Metropolis algorithm” (Metropolis 1958)

• Can often prove that if you run long enough will
reach a goal state – but may take exponential time

• In some cases can prove that with high probability a
goal is reached in polynomial time
– e.g., 2-SAT, Papadimitriou 1997

• Widely used for real-world problems where actual
complexity is unknown – scheduling, optimization
– N-Queens – probably polynomial, but no one has tried to

prove formal bound

17

Traveling Salesman

Recall the Traveling Salesperson (TSP) Problem:
Given a fully connected, weighted graph G =
(V,E), is there a cycle that visits all vertices
exactly once and has total cost ≤ K?
– NP-complete: reduction from Hamiltonian circuit

• Occurs in many real-world transportation and
design problems

• Randomized simulated annealing algorithm demo

18

Final Review

(“We’ve covered way too much in this course…

What do I really need to know?”)

4

19

Be Sure to Bring

• 1 page of notes

• A hand calculator

• Several #2 pencils

20

Final Review: What you need to
know

• Basic Math
– Logs, exponents, summation of series
– Proof by induction

• Asymptotic Analysis
– Big-oh, Theta and Omega
– Know the definitions and how to show f(N) is big-

O/Theta/Omega of (g(N))
– How to estimate Running Time of code fragments

• E.g. nested “for” loops

• Recurrence Relations
– Deriving recurrence relation for run time of a recursive

function
– Solving recurrence relations by expansion to get run time

�

=

+=
N

i

NN
i

1 2

)1(

1

11

0 −
−=

+

=

�
A

A
A

NN

i

i

21

• Lists, Stacks, Queues
– Brush up on ADT operations – Insert/Delete, Push/Pop etc.

– Array versus pointer implementations of each data structure

– Amortized complexity of stretchy arrays

• Trees
– Definitions/Terminology: root, parent, child, height, depth

etc.

– Relationship between depth and size of tree
• Depth can be between O(log N) and O(N) for N nodes

Final Review: What you need to
know

22

• Binary Search Trees
– How to do Find, Insert, Delete

• Bad worst case performance – could take up to O(N) time

– AVL trees
• Balance factor is +1, 0, -1
• Know single and double rotations to keep tree balanced
• All operations are O(log N) worst case time

– Splay trees – good amortized performance
• A single operation may take O(N) time but in a sequence of

operations, average time per operation is O(log N)
• Every Find, Insert, Delete causes accessed node to be moved to

the root
• Know how to zig-zig, zig-zag, etc. to “bubble” node to top

– B-trees: Know basic idea behind Insert/Delete

Final Review: What you need to
know

23

• Priority Queues
– Binary Heaps: Insert/DeleteMin, Percolate up/down

• Array implementation
• BuildHeap takes only O(N) time (used in heapsort)

– Binomial Queues: Forest of binomial trees with heap order
• Merge is fast – O(log N) time
• Insert and DeleteMin based on Merge

• Hashing
– Hash functions based on the mod function
– Collision resolution strategies

• Chaining, Linear and Quadratic probing, Double Hashing

– Load factor of a hash table

Final Review: What you need to
know

24

• Sorting Algorithms: Know run times and how they work
– Elementary sorting algorithms and their run time

• Selection sort

– Heapsort – based on binary heaps (max-heaps)
• BuildHeap and repeated DeleteMax’s

– Mergesort – recursive divide-and-conquer, uses extra array

– Quicksort – recursive divide-and-conquer, Partition in-place
• fastest in practice, but O(N2) worst case time

• Pivot selection – median-of-three works best

– Know which of these are stable and in-place

– Lower bound on sorting, bucket sort, and radix sort

Final Review: What you need to
know

5

25

• Disjoint Sets and Union-Find
– Up-trees and their array-based implementation
– Know how Union-by-size and Path compression work
– No need to know run time analysis – just know the result:

• Sequence of M operations with Union-by-size and P.C. is Θ(M
α(M,N)) – just a little more than Θ(1) amortized time per op

• Graph Algorithms
– Adjacency matrix versus adjacency list representation of

graphs
– Know how to Topological sort in O(|V| + |E|) time using a

queue
– Breadth First Search (BFS) for unweighted shortest path

Final Review: What you need to
know

26

Final Review: What you need to
know

• Graph Algorithms (cont.)
– Dijkstra’s shortest path algorithm
– Depth First Search (DFS) and Iterated DFS

• Use of memory compared to BFS
– A* - relation of g(n) and h(n)
– Minimum Spanning trees – Kruskal’s algorithm
– Connected components using DFS or union/find

• NP-completeness
– Euler versus Hamiltonian circuits
– Definition of P, NP, NP-complete
– How one problem can be “reduced” to another (e.g. input to HC

can be transformed into input for TSP)

27

Final Review: What you need to
know

• Multidimensional Search Trees
– k-d Trees – find and range queries

• Depth logarithmic in number of nodes

– Quad trees – find and range queries
• Depth logarithmic in inverse of minimal distance between

nodes
• But higher branching fractor means shorter depth if points are

well spread out (log base 4 instead of log base 2)

• Randomized Algorithms
– expected time vs. average time vs. amortized time
– Treaps, randomized Quicksort, primality testing

