CSE 326: Data Structures
Lecture #23

R&“d[m]im{ Data Structures

Henry Kautz
Winter Quarter 2002

Pick aCard

Warning! The Queen of Spades
isa very unlucky card!

Randomized Data Structures

* We've seen many data structures with good
average case performance on random inputs, but
bad behavior on particular inputs

— Binary Search Trees

« Instead of randomizing the input (since we

cannot!), consider randomizing the data structure
— No bad inputs, just unlucky random numbers
— Expected case good behavior on any input

What' s the Difference?

« Deterministic with good average time

— If your application happens to always use the “bad” case,
you are in big trouble!

» Randomized with good expected time

— Onceinawhile you will have an expensive operation, but
no inputs can make this happen al the time

» Kind of likean @

insurance policy

for your algorithm! A I I STEITE@

You're in good hands. 4

Treap Dictionary Data Structure

heap in yellow; search treein blue

 Treaps have the binary
search tree
— binary tree property
— search tree property
* Treapsalso havethe
heap-order property!
— randomly assigned
priorities

Treap Insert

e Choose arandom priority
* Insert asin normal BST

* Rotate up until heap order is restored (maintaining
BST property while rotating)

insert(15)

(7 o o
(o) (o) (o)
A AN AN T A 5
@ @ @ ‘yv (5
™ N N AN
(&) (&) (&)

Tree + Heap... Why Bother?

Insert data in sorted order into a treap; what shape
tree comes out?

insert(7) insert(8) insert(9) insert(12)

Treap Delete

Find the key

Increase its value to co
Rotate it to the fringe
Snip it off

Treap Delete, cont.

Treap Summary

* Implements Dictionary ADT
— insert in expected O(log n) time
— deletein expected O(log n) time
— find in expected O(log n) time
— but worst case O(n)
Memory use
— O(2) per node
— about the cost of AVL trees
Very simple to implement, little overhead — less
than AVL trees

Other Randomized Data
Structures & Algorithms

» Randomized skip list
— cross between alinked list and a binary search tree
— O(log n) expected time for finds, and then can smply
follow links to do range queries
» Randomized QuickSort
— just choose pivot position randomly
— expected O(n log n) time for any input

Randomized Primality Testing

» No known polynomial time algorithm for primality
testing
— but does not appear to be NP-complete either —in
between?
e Best known agorithm:
1. Guessarandom number 0<A <N
2. If (AN19%N) # 1, then N isnot prime
3. Otherwise, 75% chance N is prime

— orisa“Carmichael number” —aslightly more complex test
rules out this case

4. Repeat to increase confidence in the answer

Randomized Search Algorithms

¢ Finding agoal node in very, very large graphs
using DFS, BFS, and even A* (using known
heuristic functions) is often too slow

N-Queens Problem

» Place N queenson an N by N chessboard so that
no two queens can attack each other
* Graph search formulation:

— Each way of placing from O to N queens on the
chesshoard is a vertex

— Edge between vertices that differ by adding or removing
one queen

— Start vertex: empty board

— Goal vertex: any one with N non-attacking queens (there
are many such goals)

Demo: N-Queens

DFS
(over vertices where no queens attack each other)

Versus
Random walk

(biased to prefer moving to vertices with fewer
attacks between queens)

Random Walk — Complexity?

« Random walk — also known as an “absorbing
Markov chain”, “simulated annealing”, the
“Metropolis agorithm” (metropolis 1958)

« Can often prove that if you run long enough will
reach agoal state — but may take exponential time

« |n some cases can prove that with high probability a
goal isreached in polynomial time

— eg., 2-SAT, Papadimitriou 1997

* Widely used for real-world problems where actual

complexity is unknown — scheduling, optimization

— N-Queens — probably polynomial, but no one hastried to

prove formal bound “

Traveling Salesman

Recall the Traveling Salesper son (T SP) Problem:
Given afully connected, weighted graph G =
(V,E), isthereacyclethat visits all vertices
exactly once and hastotal cost < K?

— NP-complete: reduction from Hamiltonian circuit

¢ Occursin many real-world transportation and

design problems

» Randomized simulated annealing algorithm demo

Final Review

(“WEe've covered way too much in this course...
What do | really need to know?”)

Be Sureto Bring
« 1 page of notes
* A hand calculator

* Several #2 pencils

Final Review: What you need to

¢ Basic Math knOW

zN:i _N(N+1)
— Logs, exponents, summation of series i 2
— Proof by induction iA' _AM-1
+ Asymptotic Analysis = AL

— Big-oh, Thetaand Omega

— Know the definitions and how to show f(N) isbig-
OfTheta/Omega of (g(N))

— How to estimate Running Time of code fragments
* E.g. nested “for” loops
» Recurrence Relations

— Deriving recurrence relation for run time of arecursive
function

— Solving recurrence relations by expansion to get run time

Final Review: What you need to

know

* Lists, Stacks, Queues
— Brush up on ADT operations — Insert/Delete, Push/Pop etc.
— Array versus pointer implementations of each data structure
— Amortized complexity of stretchy arrays

* Trees

— Definitions/Terminology: root, parent, child, height, depth
€etc.

— Relationship between depth and size of tree
« Depth can be between O(log N) and O(N) for N nodes

21

Final Review: What you need to
know

» Binary Search Trees
— How to do Find, Insert, Delete
« Bad worst case performance — could take up to O(N) time
— AVL trees
» Balancefactoris+1, 0, -1
« Know single and double rotations to keep tree balanced
« All operations are O(log N) worst casetime
— Splay trees— good amortized performance

* A single operation may take O(N) time but in a sequence of
operations, average time per operation is O(log N)

« Every Find, Insert, Delete causes accessed node to be moved to
the root

* Know how to zig-zig, zig-zag, etc. to “bubble” node to top

— B-trees: Know basic idea behind Insert/Delete »

Final Review: What you need to

know

« Priority Queues
— Binary Heaps: Insert/DeleteMin, Percolate up/down
« Array implementation
« BuildHeap takes only O(N) time (used in heapsort)
— Binomia Queues: Forest of binomial trees with heap order
* Mergeisfast — O(log N) time
« Insert and DeleteMin based on Merge
» Hashing
— Hash functions based on the mod function
— Collision resolution strategies
« Chaining, Linear and Quadratic probing, Double Hashing
— Load factor of ahash table

Final Review: What you need to
know

» Sorting Algorithms: Know run times and how they work
— Elementary sorting algorithms and their run time
« Selection sort
— Heapsort — based on binary heaps (max-heaps)
« BuildHeap and repeated DeleteMax’s
— Mergesort — recursive divide-and-conquer, uses extra array
— Quicksort — recursive divide-and-conquer, Partition in-place
« fastest in practice, but O(N?) worst casetime
« Pivot selection — median-of-three works best
— Know which of these are stable and in-place
— Lower bound on sorting, bucket sort, and radix sort

24

Final Review: What you need to

know

Disjoint Sets and Union-Find

— Up-trees and their array-based implementation

— Know how Union-by-size and Path compression work

— No need to know run time analysis— just know the result:

« Sequence of M operations with Union-by-size and P.C. is ®(M
a(M,N)) —just alittle more than ©(1) amortized time per op
» Graph Algorithms

— Adjacency matrix versus adjacency list representation of
graphs

— Know how to Topological sort in O(|V| + [E]) time using a
queue

— Breadth First Search (BFS) for unweighted shortest path

25

Final Review: What you need to

know
« Graph Algorithms (cont.)
— Dijkstra’s shortest path al gorithm
— Depth First Search (DFS) and Iterated DFS
« Use of memory compared to BFS
— A* - relation of g(n) and h(n)
— Minimum Spanning trees — Kruskal’s algorithm
— Connected components using DFS or union/find
¢ NP-completeness
— Euler versus Hamiltonian circuits
— Definition of P, NP, NP-complete

— How one problem can be “reduced” to another (e.g. input to HC
can be transformed into input for TSP)

26

Final Review: What you need to
know

¢ Multidimensional Search Trees
— k-d Trees—find and range queries
« Depth logarithmic in number of nodes
— Quad trees—find and range queries

« Depth logarithmic in inverse of minimal distance between
nodes

« But higher branching fractor means shorter depth if points are
well spread out (log base 4 instead of log base 2)
» Randomized Algorithms
— expected time vs. average time vs. amortized time
— Treaps, randomized Quicksort, primality testing

27

