
1

1

CSE 326: Data Structures
Lecture #24

Odds ‘n Ends

Henry Kautz

Winter Quarter 2002

2

Treap Delete

• Find the key

• Increase its value to ∞
• Rotate it to the fringe

• Snip it off

delete(9)

6
7

7
8

2�∞
9

9
15

15
12

7
8

6
7

∞
9

9
15

15
12

rotate left

7
8

6
7

∞
9

9
1515

12

rotate left

rotate right

3

Treap Delete, cont.

7
8

6
7

∞
9

9
1515

12

rotate right

7
8

6
7

∞
9

9
15

15
12

rotate right

7
8

6
7

∞
9

9
15

15
12

snip!

4

Moral

• Yes, Virginia, you can maintain the Binary Search
Tree property while restoring the heap property.

5

Traveling Salesman

Recall the Traveling Salesperson (TSP) Problem:
Given a fully connected, weighted graph G =
(V,E), is there a cycle that visits all vertices
exactly once and has total cost ≤ K?
– NP-complete: reduction from Hamiltonian circuit

• Occurs in many real-world transportation and
design problems

• Randomized simulated annealing algorithm demo

6

Final Statistics

• multiple choice – 33 points

• true / false – 27 points

• solving recurrence relations – 10 points

• calculating various quantities – 16 points

• creating a novel algorithm – 8 points

• data structure simulation – 6 points

2

7

Final Review

(“We’ve covered way too much in this course…

What do I really need to know?”)

8

Be Sure to Bring

• 1 page of notes

• A hand calculator!

• Several #2 pencils

9

Final Review: What you need to
know

• Basic Math
– Logs, exponents, summation of series
– Proof by induction

• Asymptotic Analysis
– Big-oh, Theta and Omega
– Know the definitions and how to show f(N) is big-

O/Theta/Omega of (g(N))
– How to estimate Running Time of code fragments

• E.g. nested “for” loops

• Recurrence Relations
– Deriving recurrence relation for run time of a recursive

function
– Solving recurrence relations by expansion to get run time

�
=

+=
N

i

NN
i

1 2

)1(

1

11

0 −
−=

+

=
�

A

A
A

NN

i

i

10

• Lists, Stacks, Queues
– Brush up on ADT operations – Insert/Delete, Push/Pop etc.

– Array versus pointer implementations of each data structure

– Amortized complexity of stretchy arrays

• Trees
– Definitions/Terminology: root, parent, child, height, depth

etc.

– Relationship between depth and size of tree
• Depth can be between O(log N) and O(N) for N nodes

Final Review: What you need to
know

11

• Binary Search Trees
– How to do Find, Insert, Delete

• Bad worst case performance – could take up to O(N) time

– AVL trees
• Balance factor is +1, 0, -1
• Know single and double rotations to keep tree balanced
• All operations are O(log N) worst case time

– Splay trees – good amortized performance
• A single operation may take O(N) time but in a sequence of

operations, average time per operation is O(log N)
• Every Find, Insert, Delete causes accessed node to be moved to

the root
• Know how to zig-zig, zig-zag, etc. to “bubble” node to top

– B-trees: Know basic idea behind Insert/Delete

Final Review: What you need to
know

12

• Priority Queues
– Binary Heaps: Insert/DeleteMin, Percolate up/down

• Array implementation
• BuildHeap takes only O(N) time (used in heapsort)

– Binomial Queues: Forest of binomial trees with heap order
• Merge is fast – O(log N) time
• Insert and DeleteMin based on Merge

• Hashing
– Hash functions based on the mod function
– Collision resolution strategies

• Chaining, Linear and Quadratic probing, Double Hashing

– Load factor of a hash table

Final Review: What you need to
know

3

13

• Sorting Algorithms: Know run times and how they work
– Elementary sorting algorithms and their run time

• Selection sort

– Heapsort – based on binary heaps (max-heaps)
• BuildHeap and repeated DeleteMax’s

– Mergesort – recursive divide-and-conquer, uses extra array

– Quicksort – recursive divide-and-conquer, Partition in-place
• fastest in practice, but O(N2) worst case time

• Pivot selection – median-of-three works best

– Know which of these are stable and in-place

– Lower bound on sorting, bucket sort, and radix sort

Final Review: What you need to
know

14

• Disjoint Sets and Union-Find
– Up-trees and their array-based implementation
– Know how Union-by-size and Path compression work
– No need to know run time analysis – just know the result:

• Sequence of M operations with Union-by-size and P.C. is Θ(M
α(M,N)) – just a little more than Θ(1) amortized time per op

• Graph Algorithms
– Adjacency matrix versus adjacency list representation of

graphs
– Know how to Topological sort in O(|V| + |E|) time using a

queue
– Breadth First Search (BFS) for unweighted shortest path

Final Review: What you need to
know

15

Final Review: What you need to
know

• Graph Algorithms (cont.)
– Dijkstra’s shortest path algorithm
– Depth First Search (DFS) and Iterated DFS

• Use of memory compared to BFS
– A* - relation of g(n) and h(n)
– Minimum Spanning trees – Kruskal’s algorithm
– Connected components using DFS or union/find

• NP-completeness
– Euler versus Hamiltonian circuits
– Definition of P, NP, NP-complete
– How one problem can be “reduced” to another (e.g. input to HC

can be transformed into input for TSP)
16

Final Review: What you need to
know

• Multidimensional Search Trees
– k-d Trees – find and range queries

• Depth logarithmic in number of nodes

– Quad trees – find and range queries
• Depth logarithmic in inverse of minimal distance between

nodes
• But higher branching fractor means shorter depth if points are

well spread out (log base 4 instead of log base 2)

• Randomized Algorithms
– expected time vs. average time vs. amortized time
– Treaps, randomized Quicksort, primality testing

