

Henry Kautz Winter 2002

Silicon Downs		
Ро	st #1	Post #2
n ³	$+ 2n^2$	$100n^2 + 1000$
n ^{0.}	1	log n
n +	- 100n ^{0.1}	$2n+10 \ log \ n$
5n ²	5	n!
n ⁻¹	⁵ 2 ⁿ /100	1000n ¹⁵
821	og n	$3n^7 + 7n$

	The Losers	Win
Post #1	Post #2	Better algorithm!
n^3+2n^2	$100n^2 + 1000$	O(n ²)
n ^{0.1}	log n	O(log n)
$n + 100n^{0.1}$	$2n + 10 \log n$	TIE O(n)
5n ⁵	n!	O(n ⁵)
n-152n/100	1000n ¹⁵	O(n ¹⁵)
8 ^{2log n}	$3n^{7} + 7n$	O(n ⁶)

constant:	O(1)	
logarithmic:	O(log n)	
linear:	O(n)	
log-linear:	O(n log n)	
superlinear:	$O(n^{1+c})$	(c is a constant > 0)
quadratic:	O(n ²)	
polynomial:	O(n ^k)	(k is a constant)
exponential:	O(c ⁿ)	(c is a constant > 1)

- consecutive stmts
- conditionals

• function calls

- loops
- recursive functions
- sum of iterations - cost of function body

- sum of branches, condition

- solve recursive equation

Above all, use your head!

Nested Loops

for i = 1 to n do for j = 1 to n do sum = sum + 1

Nested Loops
for
$$i = 1$$
 to n do
for $j = 1$ to n do
sum = sum + 1

$$\sum_{i=1}^{n} \sum_{j=1}^{n} 1 = \sum_{i=1}^{n} n = n^{2}$$

Conditional
 if c then S₁ else S₂

- Suppose you are doing a O() analysis?
- Suppose you are doing a $\Omega($) analysis?

Value-Dependent Operations

- Suppose you are doing a O() analysis?
- Suppose you are doing a $\Omega($) analysis?

Some Educational Statistics

- Most teachers speak at a rate of 100-200 words per minute. If students really concentrate, they can understand about 50-100 words per minute.
- During a lecture, about 40% of the students are thinking about something else.
- Students of lecture-based courses show that students remember about 8% of the material after the course is over.

Active Learning

- Get up and stretch!
- For Monday:
 - Read Sections 2.4.3 and 2.4.4. Then:
 - Read Section 7.6 (Mergesort) carefully
 - On a single side of a sheet of paper, summarize in your own words the major steps in analyzing a recursive procedure. Bring **two** copies to class.