

Silicon Downs	
Post \#1	Post \#2
$\mathrm{n}^{3}+2 \mathrm{n}^{2}$	$100 \mathrm{n}^{2}+1000$
$\mathrm{n}^{0.1}$	$\log \mathrm{n}$
$\mathrm{n}+100 \mathrm{n}^{0.1}$	$2 \mathrm{n}+10 \log \mathrm{n}$
$5 \mathrm{n}^{5}$	$\mathrm{n}!$
$\mathrm{n}^{-152^{n} / 100}$	$1000 \mathrm{n}^{15}$
$88^{2 \log n}$	$3 n^{7}+7 n$

The Losers Win		
Post \#1	Post +2	Better algorithm!
$\mathrm{n}^{3}+2 \mathrm{n}^{2}$	$100 \mathrm{n}^{2}+1000$	$\mathrm{O} \mathrm{n}^{2}$)
$\mathrm{n}^{0.1}$	$\log \mathrm{n}$	O(log n)
$\mathrm{n}+100 \mathrm{n}^{0.1}$	$2 \mathrm{n}+10 \log \mathrm{n}$	TIE O(n)
$5 \mathrm{n}^{5}$	n !	$\mathrm{O}\left(\mathrm{n}^{5}\right)$
$\mathrm{n}^{1 / 52^{2} / 100}$	$1000{ }^{15}$	$\mathrm{O}\left(\mathrm{n}^{15}\right)$
$8^{2 l o g n}$	$3 \mathrm{n}^{7}+7 \mathrm{n}$	$\mathrm{O} \mathrm{n}^{6}$)

Common Names

constant:	$\mathrm{O}(1)$	
logarithmic:	$\mathrm{O}(\log \mathrm{n})$	
linear:	$\mathrm{O}(\mathrm{n})$	
log-linear:	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$	
superlinear:	$\mathrm{O}\left(\mathrm{n}^{1+c}\right)$	$(\mathrm{c}$ is a constant $>0)$
quadratic:	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	
polynomial:	$\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$	$(\mathrm{k}$ is a constant $)$
exponential:	$\mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$	$(\mathrm{c}$ is a constant $>1)$

Analyzing Code

- C++ operations - constant time
- consecutive stmts - sum of times
- conditionals - sum of branches, condition
- loops - sum of iterations
- function calls - cost of function body
- recursive functions - solve recursive equation

Above all, use your head!

Nested Dependent Loops

for $i=1$ to n do
for $j=i$ to n do
sum $=s u m+1$

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} 1=\sum_{i=1}^{n}(n-i-1)=\sum_{i=1}^{n}(n+1)-\sum_{i=1}^{n} i=
$$

?

Arithmetic Series

$S(N)=1+2+\ldots+N=\sum_{i=1}^{N} i=$?

- The sum is: $S(1)=1, S(2)=3, S(3)=6, S(4)=10, \ldots$
- Is $\mathrm{S}(\mathrm{N})=\mathrm{N}(\mathrm{N}+1) / 2$?

Prove by induction

- Base case: for $\mathrm{N}=1, \mathrm{~S}(\mathrm{~N})=1(2) / 2=1 \boldsymbol{m}$
- Assume true for $\mathrm{N}=\mathrm{k}$
- Suppose $\mathrm{N}=\mathrm{k}+1$.
$-\mathrm{S}(\mathrm{k}+1)=1+2+\ldots+\mathrm{k}+(\mathrm{k}+1)=\mathrm{S}(\mathrm{k})+(\mathrm{k}+1)$
$=k(k+1) / 2+(k+1)=(k+1)(k / 2+1)=(k+1)(k+2) / 2$.

Other Important Series

(know them well!)

- Sum of squares: $\sum_{i=1}^{N} i^{2}=\frac{N(N+1)(2 N+1)}{6} \approx \frac{N^{3}}{3}$ for large N
- Sum of exponents: $\sum_{i=1}^{N} i^{k} \approx \frac{N^{k+1}}{|k+1|}$ for large N and $\mathrm{k} \neq-1$
- Harmonic series $(k=-1): \sum_{i=1}^{N} \frac{1}{i} \approx \log _{e} N$ for large N $-\log _{e} N($ or $\ln N)$ is the natural \log of N
- Geometric series: $\sum_{i=0}^{N} A^{i}=\frac{A^{N+1}-1}{A-1}$

Nested Dependent Loops

```
for i=1 to n do
    for j = i to n do
```

 sum \(=\) sum +1
 \(\sum_{i=1}^{n} \sum_{j=1}^{n} 1=\sum_{i=}^{n}(n-i-1)=\sum_{i=1}^{n}(n+1)-\sum_{i=1}^{n} i=\)
 \(n(n+1)-\frac{n(n+1)}{2}=\frac{n(n+1)}{2}=O\left(n^{2}\right)\)

Conditionals

- Conditional
if C then S_{1} else S_{2}
- Suppose you are doing a $\mathrm{O}(\mathrm{)}$ analysis?
- Suppose you are doing a $\Omega($) analysis?
\qquad

Value-Dependent Operations

for (i $=1$; $i<k \& \& A[i]==A[i+i] ; i++)$;
What does this do?

- Suppose you are doing a $O($) analysis?
- Suppose you are doing a Ω () analysis?

