
1

CSE 326: Data Structures
Class #4

Analysis of Algorithms III
Analysis of Recursive Algorithms

Henry Kautz

Winter 2002

Exercise

• Form groups of 5 people (split rows in half)
• Person sitting in middle is note-taker
• Share the lists of steps for analyzing a recursive

procedure. Come up with a revised list combining
best ideas. (5 minutes)

• Note-taker: copy list on a transparency.
• Then: use your method to analyze the following

procedure. (10 minutes)
• Note-taker: copy solution on a transparency

Recursive Selection Sort

Sor t (i nt A[] , i nt n)

{

i f (n<=1) r et ur n;

i nt m = A[0] ;

f or (i nt i =1; i <n; i ++) {

i f (m > A[i]) {

i nt t mp = A[i] ;

A[i] = m;

m = t mp;

}

}

Sor t (&A[1] , n- 1) ;

}

How I Analyze a Recursive
Program

1. Write recursive equation, using constants a, b, etc.
2. Expand the equation repeatedly, until I can see the

pattern
3. Write the equation that captures the pattern – make an

inductive leap! – in terms of a new variable k
4. Select a particular value for the variable k in terms of n –

pick a value that will make the recursive function a
constant

5. Simplify
Along the way, can throw out terms to simplify, if this is an upper-bound

O() calculation.

Example: Sum of Integer Queue

sum_queue(Q) {

i f (Q. l engt h == 0) r et ur n 0;

el se r et ur n Q. dequeue() +

sum_queue(Q) ; }

– One subproblem

– Linear reduction in size (decrease by 1)

– Combining: constant c (+), 1×subproblem

Equation: T(0) ≤≤≤≤ b

T(n) ≤≤≤≤ c + T(n – 1) for n>0

Sum, Continued

Equation: T(0) ≤≤≤≤ b

T(n) ≤≤≤≤ c + T(n – 1) for n>0

Solution:

T(n) ≤ c + c + T(n-2) expand recursion
≤ c + c + c + T(n-3)
≤ ck + T(n-k) for all k inductive leap
≤ cn + T(0) for k=n select value for k
≤ cn + b = O(n) simplify

2

Example: Binary Search

One subproblem, half as large

Equation: T(1) ≤ b

T(n) ≤ T(n/2) + c for n>1
Solution:

7 12 30 35 75 83 87 90 97 99

T(n) ≤ T(n/2) + c write equation
≤ T(n/4) + c + c expand
≤ T(n/8) + c + c + c
≤ T(n/2k) + kc inductive leap
≤ T(1) + c log n where k = log n select value for k
≤ b + c log n = O(log n) simplify

Example: MergeSort
Split array in half, sort each half, merge together

– 2 subproblems, each half as large

– linear amount of work to combine

T(1) ≤ b

T(n) ≤ 2T(n/2) + cn for n>1

T(n) ≤ 2T(n/2)+cn ≤ 2(2(T(n/4)+cn/2)+cn

= 4T(n/4) +cn +cn ≤ 4(2(T(n/8)+c(n/4))+cn+cn

= 8T(n/8)+cn+cn+cn expand

≤ 2kT(n/2k)+kcn inductive leap

≤ nT(1) + cn log n where k = log n select value for k

= O(n log n) simplify

Lower Bound Analysis:
Recursive Fibonacci

• Recursive Fibonacci:
i nt Fi b(n) {

i f (n == 0 or n == 1) r et ur n 1 ;

el se r et ur n Fi b(n - 1) + Fi b(n - 2) ; }

• Lower bound analysis Ω(n)

• Just like before, but be careful that equations are all ≥

Analysis

() 2 (2) simplify, because T is

(0) (1)

() 2(2 (2 2)) expand

() 3 4 (4)) simplify

(

 increasing

base case

) 3 4(2 (4 2

() (1) (2) recursive c

)) expand

(

a

7 8

e

)

s

T n

T n b T

b b T n

T n b T n

T n b b T n

T n

T T a

T T

n

b

n b n T n

≥ + + − −
≥ + −
≥ + + −

≥ +

= =
= − + −

≥

−

−
+

+

/

/ 2

/ 2

2

/ 2() (2 1) 2 (2(/ 2)) choose k=(n/2)

() 2

(6)) simplif

() (2 1) 2 (2) f

() simplif

or (/ 2) inductive

y

() 7 8(2 (6 2)) expand

() 15 16 (8) sim

()

pli

(

leap

)

f

y

2

y
k k

n n

n

n

T n b T n k k n

T n

T n b b T n

T n b T

T n b T n n

T n b b

n

a

T

n

≥

−
≥ + +

= Ω

≥ − + − ≤

− +

− −
≥ +

+

−

−
≥ −

 Note: this is not the same as (2)!!!nΩ

Important: you
introduce a new
variable k! It is
not necessarily the
case that k=n!

Learning from Analysis

• To avoid recursive calls
– store all basis values in a table

– each time you calculate an answer, store it in the table
– before performing any calculation for a value n

• check if a valid answer for n is in the table

• if so, return it

• Memoization
– a form of dynamic programming

• How much time does memoized version take?

Logs and exponents

• We will be dealing mostly with binary numbers
(base 2)

• Definition: logX B = A means XA = B

• Any base is equivalent to base 2 within a
constant factor:

• Why?

X

B
BX

2

2

log

log
log =

3

Logs and exponents
• We will be dealing mostly with binary numbers (base 2)

• Definition: logX B = A means XA = B

• Any base is equivalent to base 2 within a constant factor:

• Why?

• Because: if R = log2 B, S = log2 X, and T = logX B,

– 2R = B, 2S = X, and XT = B

– 2R = XT = 2ST i.e. R = ST and therefore, T = R/S.

X

B
BX

2

2

log

log
log =

Properties of logs

• We will assume logs to base 2 unless specified otherwise

• log AB = log A + log B (note: log AB ≠ log A•log B)

• log A/B = log A – log B (note: log A/B ≠ log A / log B)

• log AB = B log A (note: log AB ≠ (log A) B = log B A)

• log log X < log X < X for all X > 0

– log log X = Y means

– log X grows slower than X; called a “sub-linear” function

• log 1 = 0, log 2 = 1, log 1024 = 10

X
Y

=22

Normal scale plot

n^3

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 5 10 15 20 25

n^3

Log-Normal Plot

n^3

1

10

100

1000

10000

0 5 10 15 20 25

n^3

Why?

What
would give
a straight
line?

Log-Normal Plot

3^n

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

0 5 10 15 20 25

3^n

Log-log plot

n^3

1

10

100

1000

10000

1 10 100

n^3

4

Log-log plot

n^3

1

10

100

1000

10000

1 10 100

n^3

Kinds of Analysis

• So far we have considered worst case analysis
• We may want to know how an algorithm performs

“on average”
• Several distinct senses of “on average”

– amortized
• average time per operation over a sequence of operations

– average case
• average time over a random distribution of inputs

– expected case
• average time for a randomized algorithm over different random

seeds for any input

Amortized Analysis

• Consider any sequence of operations applied to a
data structure
– your worst enemy could choose the sequence!

• Some operations may be fast, others slow

• Goal: show that the average time per operation is
still good

n

operationsn for timetotal

Stack ADT

• Stack operations
– push

– pop

– is_empty

• Stack property: if x is on the stack before y is
pushed, then x will be popped after y is popped

What is biggest problem with an array implementation?

A

B
C
D
E
F

E D C B A

F

Stretchy Stack Implementation

i nt * dat a;
i nt maxs i ze;
i nt t op;

Push(e) {
i f (t op == maxsi ze) {

t emp = new i nt [2* maxsi ze] ;
f or (i =0; i <maxsi ze; i ++) t emp[i] =dat a[i] ; ;
del et e dat a;
dat a = t emp;
maxsi ze = 2* maxsi ze; }

el se { dat a[++t op] = e; }

Best case Push = O()

Worst case Push = O()

Stretchy Stack Amortized
Analysis

• Consider sequence of n operations
push(3); push(19); push(2); …

• What is the max number of stretches?
• What is the total time?

– let’s say a regular push takes time a, and stretching an array
contain k elements takes time bk.

• Amortized time =

5

Stretchy Stack Amortized
Analysis

• Consider sequence of n operations
push(3); push(19); push(2); …

• What is the max number of stretches?
• What is the total time?

– let’s say a regular push takes time a, and stretching an array
contain k elements takes time bk.

• Amortized time =

log n

log

(1 2 4 8 ...) 2
n

i

i o

an b n an b
=

+ + + + + + = +
�

Series

• Arithmetic series:

• Geometric series:
1

11

0 −
−=

+

=

�
A

A
A

NN

i

i

1

(1)

2

N

i

N N
i

=

+=
�

1
1

0

2 1
2 2 1

2 1

nn
i n

i

+
+

=

−= = −
−

�

log 1log
log 1

0

2 1
2 (2)2 1 2 1

2 1

nn
i n

i

n
+

=

−= = − = −
−

�

Stretchy Stack Amortized
Analysis

• Consider sequence of n operations
push(3); push(19); push(2); …

• What is the max number of stretches?
• What is the total time?

– let’s say a regular push takes time a, and stretching an array
contain k elements takes time bk.

• Amortized time = (an+b(2n-1))/n = O()

log n

log

(1 2 4 8 ...) 2

(2 1)

n
i

i o

an b n an b

an b n
=

+ + + + + + = +

= + −

�

Moral of the Story

To Do

• Assignment #1 due:
– Electronic turnin: midnight, Monday Jan 21
– Hardcopy writeup due in class Wednesday, Jan 23

• Finish reading Chapter 3.
– Be prepared to discuss these questions (bring written

notes to refer to):
1. What is a call stack?
2. Could you write a compiler that did not use one?
3. What data structure does a printer queue use?

