CSE 326: Data Structures
Class #4
Analysisof Algorithms 1|
Analysis of Recursive Algorithms

Exercise

Form groups of 5 people (split rowsin half)
Person sitting in middleis note-taker

Sharethe lists of stepsfor analyzing arecursive
procedure. Come up with arevised list combining
best ideas. (5 minutes)

Note-taker: copy list on atransparency.

Then: use your method to analyze the following
procedure. (10 minutes)

Note-taker: copy solution on atransparency

Recursive Selection Sort

Sort(int A[], int n)
{
if (n<=1) return;
int m= A0];
for (int i=1; i<n; i++){
it (m> Al {
int tmp = Ali];
Ali] =m
m = tnp;
}
}
Sort( &A[1], n-1);

How | Analyze a Recursive
Program

1. Write recursive equation, using constants a, b, etc.
2. Expand the equation repeatedly, until | can see the

pattern

3. Write the equation that captures the pattern — make an

inductive leap! — in terms of a new variable k

4. Select aparticular value for the variable k in terms of n—

pick a value that will make the recursive function a
constant

5. Simplify

Along the way, can throw out terms to simplify, if thisis an upper-bound
O() calculation.

Example: Sum of Integer Queue

sum queue(Q {
if (Qlength == 0) return O;
else return Q dequeue() +
sum queue(Q; }
— One subproblem
— Linear reduction in size (decrease by 1)
— Combining: constant ¢ (+), 1xsubproblem

Equation: TO) < b
T(n) £ c + T(n—-1) forn>0

Sum, Continued

Equation: TO) < b

T(n) £ ¢ + T(n—-1) forn>0

Solution:
T(n) <c+c+T(n-2) expand recursion
<c+c+c+T(n-3)
<ck + T(n-k) forall k inductive leap
<cn+T(0) fork=n select value for k
<cn+b = O(n) simplify




Example: Binary Search

‘ 7 ‘ 12‘ 30‘ 35‘ 75‘ 83‘ 87‘ 90‘ 97‘ 99‘

One subproblem, half as large
Equation: T <b
T(N)<T(n/2) +c  forn>1

Solution:
T(N)<T(n2) +c write equation
<T(n/4)+c+c expand
<T(n/8)+c+c+c
< T(n2K) + ke inductive leap
<T(1)+clogn wherek=logn select value for k
<b+clogn = O(logn) simplify

Example: MergeSort

Split array in half, sort each half, merge together
— 2 subproblems, each half aslarge
— linear amount of work to combine

T1) <b

T(n) € 2T(/2) +en forn>1
T(n) <2T(/2)+cn < 2(2(T(n/4)+cn/2)+cn
=4T(n/4) +cn+cn < 4(2(T(n/8)+c(n/4))+cn+cn

Lower Bound Analysis:
Recursive Fibonacci

» Recursive Fibonacci:
int Fib(n){
if (n==0o0or n==1) return 1 ;
else return Fib(n - 1) + Fib(n - 2); }
« Lower bound analysis Q(n)
« Just like before, but be careful that equations are all >

= 8T(n/8)+cn+cn+cn expand

< 2T(n/2¥)+ken inductive leap

< nT(1) + cnlog nwherek =log n select value for k

=0O(nlog n) simplify

Analysis
TO)=T@)=a base case
T(N)=b+T(n-D)+T(n-2) recursive case
T(n)2b+2T(n-2) simplify, because T isincreasing
T(n)=b+2(b+2T(n-2-2)) expand
T(n)=30+4T(n-4)) simplify | Important: you
introduce a new

T(n)=30+4(b+2T(n-4-2) expand | oiablek Itis
T(n)=7b+8T(n-6)) simplify | not necessarily the
T(n) 2 7b+8(b+ 2T (n-6-2)) expand | Caethatien!
T(n) =150 +16T (n-8) simplify
T(n)= (2 -)b+2"T(n-2k) fork<(n/2) inductive leap
T(n)= (22 -)b+2"*T(n-2(n/2)) choose k=(n/2)
T(n)=2"*(b+a)-b smplify
T(n) =Q(2"?) Note: thisis not the same as Q(2")!!!

Learning from Analysis

« Toavoid recursivecalls
— store all basis valuesin atable
— each time you calculate an answer, store it in the table
— before performing any calculation for avalue n
« check if avalid answer for n isin the table
« if so, return it
¢ Memoization
— aform of dynamic programming
¢ How much time does memoized version take?

Logs and exponents

* Wewill be dealing mostly with binary numbers
(base 2)

« Definition: logy B = A means XA = B
« Any baseis equivalent to base 2 within a
constant factor:
_log, B

log, X

log, B

* Why?




Logs and exponents

We will be dealing mostly with binary numbers (base 2)
Definition: log, B = A means XA =B

Any base is equivalent to base 2 within a constant factor:

log, B

log, B=
9x log, X

Why?

Because: if R=1log, B, S=1log, X, and T = logy B,
- R=B,25=X,andX"=B

— 2R=XT=25 j.e. R = ST and therefore, T = R/S.

Properties of logs

We will assume logs to base 2 unless specified otherwise
logAB =log A +logB (note: log AB # log A¢log B)
log A/B=log A —logB (note: log A/B #log A / log B)
logAB=BlogA (note:log AB % (logA) B=1log®A)
loglog X <log X <X forall X >0

- loglogX =Y means2” = X

— log X grows slower than X; called a“sub-linear” function
log1=0,log2=1,log 1024 = 10

Normal scale plot

Log-Normal Plot

Why?

What
would give
0 a straight
line?

Log-Normal Plot

100000000

Log-log plot




Log-log plot

—

Kinds of Analysis

« Sofar we have considered worst case analysis

* We may want to know how an algorithm performs
“on average’
» Several distinct senses of “on average’
— amortized
« average time per operation over a sequence of operations
— average case
« average time over arandom distribution of inputs
— expected case

« average time for arandomized algorithm over different random
seeds for any input

Amortized Analysis

« Consider any sequence of operations applied to a
data structure

— your worst enemy could choose the sequence!
« Some operations may befast, others slow

¢ Goal: show that the average time per operation is
still good
total timefor n operations
n

Stack ADT
EDCBA
[ —
B
 Stack operations cC|l —
— push E
- P F F
— is_empty

» Stack property: if x ison the stack beforey is

pushed, then x will be popped after y is popped
What is biggest problem with an array implementation?

Stretchy Stack |mplementation

int * data; Best case Push=O( )
int nmaxsize,
int top; Worst case Push = O( )
Push(e){
if (top == naxsize){
tenp = new int[2*maxsi ze];
for (i=0;i<maxsize;i++) tenp[i]=datali]; ;
del ete data;
data = tenp;
nexsi ze = 2*maxsi ze; }
else { data[++top] = e; }

Stretchy Stack Amortized
Analysis

Consider sequence of n operations
push(3); push(19); push(2); ...

What is the max number of stretches?

What is the total time?

— let’ssay aregular push takes time a, and stretching an array
contain k elements takes time bk.

Amortized time =




Stretchy Stack Amortized
Analysis

» Consider sequence of n operations
push(3); push(19); push(2); ...
* What is the max number of stretches? log n

* What isthe total time?
— let’s say aregular push takestime a, and stretching an array
contain k elements takes time bk.

logn
an+b(1+2+4+8+..+n)=an+by 2

i=o

Amortized time =

Series
* Arithmetic series; 2 =7N(’\;+1)

+ Geomeric series; o A1
i=0 A-1

n . n+l _
Zzl :2 1:2n+1_1
i=0 2-1

logn 2Iogn+l -1

Y 2 =" ==(2%)2'-1=2n-1
i=0 2-1

Stretchy Stack Amortized
Analysis

Consider sequence of n operations
push(3); push(19); push(2); ...
What is the max number of stretches? logn

Wheat is the total time?
— let's say aregular push takestime a, and stretching an array
contain k elements takes time bk.

logn
an+b(l+2+4+8+.+n)=an+by 2

i=o

=an+b(2n-1)

Amortized time = (an+b(2n-1))/n=O( )

Mora of the Story

To Do

¢ Assignment #1 due:
— Electronic turnin: midnight, Monday Jan 21
— Hardcopy writeup due in class Wednesday, Jan 23

* Finish reading Chapter 3.
— Be prepared to discuss these questions (bring written
notes to refer to):
1. Whatisacall stack?
2. Could you write acompiler that did not use one?
3. What data structure does a printer queue use?




