

Exercise

- Form groups of 5 people (split rows in half)
- · Person sitting in middle is note-taker
- Share the lists of steps for analyzing a recursive procedure. Come up with a revised list combining best ideas. (5 minutes)
- Note-taker: copy list on a transparency.
- Then: use your method to analyze the following procedure. (10 minutes)
- · Note-taker: copy solution on a transparency

Recursive Selection Sort
<pre>Sort(int A[], int n) </pre>
if $(n < = 1)$ return.
int $m = A[0]$:
for (int i=1; i <n; i++){<="" td=""></n;>
if (m > A[i]) {
<pre>int tmp = A[i];</pre>
A[i] = m;
m = tmp;
}
}
Sort(&A[1], n-1);
}

How I Analyze a Recursive Program 1. Write recursive equation, using constants a, b, etc.

- 2. Expand the equation repeatedly, until I can see the pattern
- 3. Write the equation that captures the pattern make an inductive leap! in terms of a new variable k
- 4. Select a particular value for the variable *k* in terms of *n pick a value that will make the recursive function a constant*

5. Simplify

Along the way, can throw out terms to simplify, if this is an upper-bound O() calculation.

Example: Binary Search		
One subproblem, half as large		
Equation: $T(1) \le b$		
$T(n) \le T(n/2) + c$	for n>1	
Solution:		
$\begin{array}{l} T(n) \leq T(n/2) + c \\ \leq T(n/4) + c + c \\ \leq T(n/8) + c + c + c \\ \leq T(n/2^k) + kc \\ \leq T(1) + c \log n \mbox{where } k = \log n \\ \leq b + c \log n = O(\log n) \end{array}$	write equation expand inductive leap select value for k simplify	

Lower Bound Analysis: Recursive Fibonacci

- Recursive Fibonacci: int Fib(n){ if (n == 0 or n == 1) return 1 ; else return Fib(n - 1) + Fib(n - 2); }
- *Lower* bound analysis $\Omega(n)$
- Just like before, but be careful that equations are all \geq

Learning from Analysis

- · To avoid recursive calls
 - store all basis values in a table
 - each time you calculate an answer, store it in the table
 - before performing any calculation for a value *n*
 - check if a valid answer for **n** is in the table
 - · if so, return it
- Memoization
 - a form of dynamic programming
- · How much time does memoized version take?

- We will be dealing mostly with binary numbers (base 2)
- Definition: $\log_X B = A$ means $X^A = B$
- Any base is equivalent to base 2 within a constant factor: $\log_2 B$

$$\log_X B = \frac{\log_2 B}{\log_2 X}$$

• Why?

• We will be dealing mostly with binary numbers (base 2)

Definition:
$$\log_X B = A$$
 means $X^A = B$

• Any base is equivalent to base 2 within a constant factor:

$$\log_X B = \frac{\log_2 B}{\log_2 X}$$

- Because: if $R = \log_2 B$, $S = \log_2 X$, and $T = \log_X B$, - $2^R = B$, $2^S = X$, and $X^T = B$
 - $-\ 2^R = X^T = 2^{ST}$ i.e. R = ST and therefore, T = R/S.

To Do

- Assignment #1 due:
 - Electronic turnin: midnight, Monday Jan 21
 - Hardcopy writeup due in class Wednesday, Jan 23
- Finish reading Chapter 3.
 - Be prepared to discuss these questions (bring written notes to refer to):
 - 1. What is a call stack?
 - 2. Could you write a compiler that did **not** use one?
 - 3. What data structure does a printer queue use?