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CSE 326: Data Structures
Class #4

Analysis of Algorithms III
Analysis of Recursive Algorithms

Henry Kautz

Winter 2002

Exercise

• Form groups of 5 people (split rows in half)
• Person sitting in middle is note-taker
• Share the lists of steps for analyzing a recursive 

procedure.  Come up with a revised list combining 
best ideas.  (5 minutes)

• Note-taker: copy list on a transparency.
• Then: use your method to analyze the following 

procedure.  (10 minutes)
• Note-taker: copy solution on a transparency

Recursive Selection Sort

Sor t ( i nt  A[ ] ,  i nt  n)

{

i f  ( n<=1)  r et ur n;

i nt m = A[ 0] ;

f or  ( i nt  i =1;  i <n;  i ++) {

i f  ( m > A[ i ] )  {

i nt  t mp = A[ i ] ;

A[ i ]  = m;

m = t mp;

}

}

Sor t (  &A[ 1] ,  n- 1 ) ;

}

How I Analyze a Recursive 
Program

1. Write recursive equation, using constants a, b, etc.
2. Expand the equation repeatedly, until I can see the 

pattern
3. Write the equation that captures the pattern – make an 

inductive leap! – in terms of a new variable k
4. Select a particular value for the variable k in terms of n –

pick a value that will make the recursive function a 
constant

5. Simplify
Along the way, can throw out terms to simplify, if this is an upper-bound 

O( ) calculation.

Example: Sum of Integer Queue

sum_queue( Q) {

i f  ( Q. l engt h == 0 )  r et ur n 0;

el se r et ur n Q. dequeue( )  +

sum_queue( Q) ;   }

– One subproblem

– Linear reduction in size (decrease by 1)

– Combining:  constant c (+),  1×subproblem

Equation: T(0)  ≤≤≤≤ b

T(n)  ≤≤≤≤ c  +  T(n – 1)    for n>0

Sum, Continued

Equation: T(0)  ≤≤≤≤ b

T(n)  ≤≤≤≤ c  +  T(n – 1)    for n>0

Solution:

T(n) ≤ c + c + T(n-2)    expand recursion
≤ c + c + c + T(n-3)
≤ ck + T(n-k)   for all k   inductive leap
≤ cn + T(0)   for k=n select value for k 
≤ cn + b    =  O(n) simplify
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Example: Binary Search

One subproblem, half as large

Equation:  T(1) ≤ b

T(n) ≤ T(n/2) + c for n>1
Solution:

7 12 30 35 75 83 87 90 97 99

T(n) ≤ T(n/2) + c write equation
≤ T(n/4) + c + c expand
≤ T(n/8) + c + c + c
≤ T(n/2k) + kc inductive leap
≤ T(1) + c log n    where k = log n select value for k
≤ b + c log n     =    O(log n) simplify

Example: MergeSort
Split array in half, sort each half, merge together

– 2 subproblems, each half as large

– linear amount of work to combine

T(1)  ≤ b

T(n)  ≤ 2T(n/2) + cn for n>1

T(n) ≤ 2T(n/2)+cn     ≤ 2(2(T(n/4)+cn/2)+cn

= 4T(n/4) +cn +cn    ≤ 4(2(T(n/8)+c(n/4))+cn+cn

= 8T(n/8)+cn+cn+cn expand

≤ 2kT(n/2k)+kcn inductive leap

≤ nT(1) + cn log n where k = log n select value for k

= O(n log n) simplify

Lower Bound Analysis: 
Recursive Fibonacci

• Recursive Fibonacci:
i nt  Fi b( n) {

i f  ( n == 0 or  n == 1)  r et ur n 1 ;

el se r et ur n Fi b( n - 1)  + Fi b( n - 2) ;  }

• Lower bound analysis Ω(n)

• Just like before, but be careful that equations are all ≥

Analysis
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Important: you 
introduce a new 
variable k!  It is 
not necessarily the 
case that k=n!

Learning from Analysis

• To avoid recursive calls
– store all basis values in a table

– each time you calculate an answer, store it in the table
– before performing any calculation for a value n

• check if a valid answer for n is in the table

• if so, return it

• Memoization
– a form of dynamic programming

• How much time does memoized version take?

Logs and exponents

• We will be dealing mostly with binary numbers 
(base 2)

• Definition: logX B = A means XA = B

• Any base is equivalent to base 2 within a 
constant factor:

• Why?
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Logs and exponents
• We will be dealing mostly with binary numbers (base 2) 

• Definition: logX B = A means XA = B

• Any base is equivalent to base 2 within a constant factor:

• Why?

• Because: if  R = log2 B, S = log2 X, and T = logX B,

– 2R = B, 2S = X, and XT = B

– 2R = XT = 2ST i.e. R = ST and therefore, T = R/S.
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Properties of logs

• We will assume logs to base 2 unless specified otherwise

• log AB = log A + log B   (note: log AB ≠ log A•log B)

• log A/B = log A – log B   (note: log A/B ≠ log A / log B)

• log AB = B log A     (note: log AB ≠ (log A) B = log B A)

• log log X < log X < X for all X > 0 

– log log X = Y means

– log X grows slower than X; called a “sub-linear” function

• log 1 = 0, log 2 = 1, log 1024 = 10

X
Y

=22
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Why?

What 
would give 
a straight 
line?

Log-Normal Plot
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Log-log plot
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Kinds of Analysis

• So far we have considered worst case analysis
• We may want to know how an algorithm performs 

“on average”
• Several distinct senses of “on average”

– amortized
• average time per operation over a sequence of operations 

– average case
• average time over a random distribution of inputs

– expected case
• average time for a randomized algorithm over different random 

seeds for any input

Amortized Analysis

• Consider any sequence of operations applied to a 
data structure
– your worst enemy could choose the sequence!

• Some operations may be fast, others slow

• Goal: show that the average time per operation is 
still good

n

operationsn for   timetotal

Stack ADT

• Stack operations
– push

– pop

– is_empty

• Stack property: if x is on the stack before y is 
pushed, then x will be popped after y is popped

What is biggest problem with an array implementation?

A

B
C
D
E
F

E D C B A

F

Stretchy Stack Implementation

i nt  *  dat a;
i nt  maxs i ze;
i nt  t op;

Push( e) {
i f  ( t op == maxsi ze) {

t emp = new i nt [ 2* maxsi ze] ;
f or  ( i =0; i <maxsi ze; i ++)  t emp[ i ] =dat a[ i ] ;  ;
del et e dat a;
dat a = t emp;  
maxsi ze = 2* maxsi ze;  }

el se {  dat a[ ++t op]  = e;  }

Best case Push = O(   )

Worst case Push = O(   )

Stretchy Stack Amortized
Analysis

• Consider sequence of n operations
push(3); push(19); push(2); …

• What is the max number of stretches?
• What is the total time?

– let’s say a regular push takes time a, and stretching an array 
contain k elements takes time bk.

• Amortized time =
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Stretchy Stack Amortized
Analysis

• Consider sequence of n operations
push(3); push(19); push(2); …

• What is the max number of stretches?
• What is the total time?

– let’s say a regular push takes time a, and stretching an array 
contain k elements takes time bk.

• Amortized time =
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Series 

• Arithmetic series:

• Geometric series: 
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Stretchy Stack Amortized
Analysis

• Consider sequence of n operations
push(3); push(19); push(2); …

• What is the max number of stretches?
• What is the total time?

– let’s say a regular push takes time a, and stretching an array 
contain k elements takes time bk.

• Amortized time = (an+b(2n-1))/n = O(      )
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Moral of the Story

To Do

• Assignment #1 due:
– Electronic turnin: midnight, Monday Jan 21
– Hardcopy writeup due in class Wednesday, Jan 23

• Finish reading Chapter 3.
– Be prepared to discuss these questions (bring written 

notes to refer to):
1. What is a call stack?
2. Could you write a compiler that did not use one? 
3. What data structure does a printer queue use?


