

Recursive Selection Sort
 Recursive Selection Sort

Example: Sum of Integer Queue

```
sum_queue (Q) {
    if (Q.length == 0 ) return 0;
    else return Q.dequeue() +
                    sum_queue (Q); }
    - One subproblem
    - Linear reduction in size (decrease by 1)
    - Combining: constant c (+), 1\timessubproblem
Equation: }\quad\textrm{T}(0)\leq\textrm{b
            T(n) \leqc+T(n-1) for n>0
```

```
Sort(int A[], int n)
```

Sort(int A[], int n)
{
{
if (n<=1) return;
if (n<=1) return;
int m = A[0];
int m = A[0];
for (int i=1; i<n; i++){
for (int i=1; i<n; i++){
if (m > A[i]) {
if (m > A[i]) {
int tmp = A[i];
int tmp = A[i];
A[i] = m;
A[i] = m;
m = tmp;
m = tmp;
}
}
}
}
Sort(\&A[1], n-1);
Sort(\&A[1], n-1);
}

```


\section*{Exercise}
- Form groups of 5 people (split rows in half)
- Person sitting in middle is note-taker
- Share the lists of steps for analyzing a recursive procedure. Come up with a revised list combining best ideas. ( 5 minutes)
- Note-taker: copy list on a transparency.
- Then: use your method to analyze the following procedure. ( 10 minutes)
- Note-taker: copy solution on a transparency

\section*{How I Analyze a Recursive}

\section*{Program}
. Write recursive equation, using constants \(a, b\), etc.
2. Expand the equation repeatedly, until I can see the pattern
3. Write the equation that captures the pattern - make an inductive leap! - in terms of a new variable \(k\)
4. Select a particular value for the variable \(k\) in terms of \(n-\) pick a value that will make the recursive function a constant
5. Simplify

Along the way, can throw out terms to simplify, if this is an upper-bound
\(O()\) calculation. \(O\) () calculation.



\section*{Lower Bound Analysis: \\ Recursive Fibonacci}
- Recursive Fibonacci:
int \(\operatorname{Fib}(\mathrm{n})\) \{
if ( \(\mathrm{n}==0\) or \(\mathrm{n}==1\) ) return 1 ;
else return Fib(n-1) +Fib(n-2); \}
- Lower bound analysis \(\Omega(\mathrm{n})\)
- Just like before, but be careful that equations are all \(\geq\)

\section*{Learning from Analysis}
- To avoid recursive calls
- store all basis values in a table
- each time you calculate an answer, store it in the table
- before performing any calculation for a value \(n\)
- check if a valid answer for \(\boldsymbol{n}\) is in the table
- if so, return it
- Memoization
- a form of dynamic programming
- How much time does memoized version take?

\section*{Logs and exponents}
- We will be dealing mostly with binary numbers (base 2)
- Definition: \(\log _{\mathrm{X}} \mathrm{B}=\mathrm{A}\) means \(\mathrm{X}^{\mathrm{A}}=\mathrm{B}\)
- Any base is equivalent to base 2 within a constant factor:
\[
\log _{X} B=\frac{\log _{2} B}{\log _{2} X}
\]
- Why?

\section*{Logs and exponents}
- We will be dealing mostly with binary numbers (base 2 )
- Definition: \(\log _{\mathrm{X}} \mathrm{B}=\mathrm{A}\) means \(\mathrm{X}^{\mathrm{A}}=\mathrm{B}\)
- Any base is equivalent to base 2 within a constant factor:
\[
\log _{X} B=\frac{\log _{2} B}{\log _{2} X}
\]
- Why?
- Because: if \(R=\log _{2} B, S=\log _{2} X\), and \(T=\log _{X} B\),
\(-2^{R}=B, 2^{S}=X\), and \(X^{T}=B\)
\(-2^{R}=X^{T}=2^{S T}\) i.e. \(R=S T\) and therefore, \(T=R / S\)

\section*{Properties of logs}
- We will assume logs to base 2 unless specified otherwise
- \(\log \mathrm{AB}=\log \mathrm{A}+\log \mathrm{B} \quad(\) note: \(\log \mathrm{AB} \neq \log \mathrm{A} \cdot \log \mathrm{B})\)
- \(\log \mathrm{A} / \mathrm{B}=\log \mathrm{A}-\log \mathrm{B} \quad(\) note: \(\log \mathrm{A} / \mathrm{B} \neq \log \mathrm{A} / \log \mathrm{B})\)
- \(\log \mathrm{A}^{\mathrm{B}}=\mathrm{B} \log \mathrm{A} \quad\left(\right.\) note: \(\left.\log \mathrm{A}^{\mathrm{B}} \neq(\log \mathrm{A})^{\mathrm{B}}=\log ^{\mathrm{B}} \mathrm{A}\right)\)
- \(\log \log X<\log X<X\) for all \(X>0\)
- \(\log \log \mathrm{X}=\mathrm{Y}\) means \(2^{2^{Y}}=X\)
- \(\log \mathrm{X}\) grows slower than X ; called a "sub-linear" function
- \(\log 1=0, \log 2=1, \log 1024=10\)



\section*{Kinds of Analysis}
- So far we have considered worst case analysis
- We may want to know how an algorithm performs "on average"
- Several distinct senses of "on average" - amortized
- average time per operation over a sequence of operations - average case
- average time over a random distribution of inputs
- expected case
- average time for a randomized algorithm over different random seeds for any inpu

Stack ADT
- Stack operations
- push
- pop
- is_empty

- Stack property: if \(x\) is on the stack before \(y\) is pushed, then x will be popped after y is popped What is biggest problem with an array implementation?

\section*{Stretchy Stack Amortized \\ Analysis}
- Consider sequence of \(n\) operations
push(3); push(19); push(2); ..
- What is the max number of stretches?
- What is the total time?
- let's say a regular push takes time \(a\), and stretching an array contain \(k\) elements takes time \(b k\)
- Amortized time =

\section*{Stretchy Stack Amortized Analysis}
- Consider sequence of \(n\) operations push(3); push(19); push(2); .
- What is the max number of stretches? \(\log n\)
- What is the total time?
- let's say a regular push takes time \(a\), and stretching an array contain \(k\) elements takes time \(b k\).
\[
a n+b(1+2+4+8+\ldots+n)=a n+b \sum_{i=o}^{\log n} 2^{i}
\]
- Amortized time =

\section*{Stretchy Stack Amortized \\ Analysis}
- Consider sequence of \(n\) operations
push(3); push(19); push(2); ...
- What is the max number of stretches? \(\log n\)
- What is the total time?
- let's say a regular push takes time \(a\), and stretching an array contain \(k\) elements takes time \(b k\).
\[
a n+b(1+2+4+8+\ldots+n)=a n+b \sum_{i=o}^{\log n} 2^{i}
\]
\[
=a n+b(2 n-1)
\]
- Amortized time \(=(a n+b(2 n-1)) / n=O(\quad)\)

\section*{To Do}
- Assignment \#1 due:
- Electronic turnin: midnight, Monday Jan 21
- Hardcopy writeup due in class Wednesday, Jan 23
- Finish reading Chapter 3.
- Be prepared to discuss these questions (bring written notes to refer to):
1. What is a call stack?
2. Could you write a compiler that did not use one?
3. What data structure does a printer queue use?

\section*{Series}
- Arithmetic series:
\(\sum_{i=1}^{N} i=\frac{N(N+1)}{2}\)
- Geometric series: \(\sum_{i=0}^{N} A^{i}=\frac{A^{N+1}-1}{A-1}\)
\[
\begin{gathered}
\sum_{i=0}^{n} 2^{i}=\frac{2^{n+1}-1}{2-1}=2^{n+1}-1 \\
\sum_{i=0}^{\log n} 2^{i}=\frac{2^{\log n+1}-1}{2-1}=\left(2^{\log n}\right) 2^{1}-1=2 n-1
\end{gathered}
\]
```

