

Questions...

1. What is a call stack?
2. Could you write a compiler that did not use one?
3. What data structure does a printer queue use?

Sparse Matrices

$>$ Sparse matrices

- what does this remind us of?
- how could we represent it?

Other Data Structures for Lists

Why Do We Need Trees?

$>$ Lists, Stacks, and Queues represent linear sequences
$>$ Data often contain hierarchical relationships that cannot be expressed as a linear ordering

- File directories or folders on your computer
- Moves in a game
- Employee hierarchies in organizations and companies
- Family trees
- Classification hierarchies (e.g. phylum, family, genus, species)

Definition and Tree Trivia

Recursive Definition of a Tree:

A tree is a set of nodes that is
a. an empty set of nodes, or
b. has one node called the root from which zero or more trees (subtrees) descend.
$>$ A tree with N nodes always has \qquad edges
$>$ Two nodes in a tree have at most how many paths between them?
$>$ Can a non-zero path from node N reach node N again?
$>$ Does depth of nodes in a non-zero path increase or decrease?

Implementation of Trees

Obvious Pointer-Based Implementation: Node with value and pointers to children

- Problem: Do not usually know number of children for a node in advance. How many pointers should we allocate space for?
> Better Implementation: $1^{\text {st }}$ Child/Next Sibling Representation
- Each node has 2 pointers: one to its first child and one to next sibling
- Can handle arbitrary number of children

Definition and Tree Trivia

Recursive Definition of a Tree:

A tree is a set of nodes that is
a. an empty set of nodes, or
b. has one node called the root from which zero or more trees (subtrees) descend.
$>$ A tree with N nodes always has $\mathrm{N}-1$ edges
$>$ Two nodes in a tree have at most one path between them
$>$ Can a non-zero path from node N reach node N again?

- No! Trees can never have cycles.
$>$ Does depth of nodes in a non-zero path increase or decrease?
- Depth always increases in a non-zero path

Application: Arithmetic Expression Trees

Example Arithmetic Expression:
$\mathrm{A}+(\mathrm{B} *(\mathrm{C} / \mathrm{D}))$
How would you express this as a tree?

- Exercise: Draw the representation

for this tree...

Example Code for Recursive Preorder

```
void print_preorder ( TreeNode * T)
{ TreeNode * P;
    if ( T == NULL ) return;
    else { print_element(T-> Element);
        P = T -> FirstChild;
        while (P != NULL) {
            print_preorder ( P );
            P = P -> NextSibling; }
        }
```

What is the running time for a tree with N nodes?

Preorder Traversal with a Stack

```
void Stack_Preorder (TreeNode * T, Stack S)
if (T == NULL) return; else push(T,S);
while (!isempty(S)) {
    T = pop(S);
    print_element(T -> Element);
    if (T -> Right != NULL) push(T -> Right, S);
    if (T -> Left != NULL) push(T -> Left, S);
    }
}
```

What is the running time for a tree with N nodes?

Recursive Preorder for Nested List Implementation

```
void print_preorder ( Node * T)
{ Node * P;
    if ( T == NULL ) return;
    print_element(T-> data);
    P = T -> next
    while (P != NULL)
        if (type(P->data)!= (Node*))
                signal error
        print_preorder ( P->data );
        P = P->next;
    }
```


Creating and Setting Nodes

```
class node {
public:
    // Creating a new node
    node(int ii) { i=ii; tag=I; }
    node (node * pp) { p=pp; tag=P; }
    // Changing the value in a node
    void set(int ii) { i=ii; tag=I; }
    void set(node * pp) { p=pp; tag=P; }
};
```


Binary Trees

$>$ Every node has at most two children

- Most popular tree in computer science
$>$ Given N nodes, what is the minimum depth of a binary tree?
$>$ What is the maximum depth of a binary tree?

Binary Trees

$>$ Every node has at most two children

- Most popular tree in computer science
$>$ Given N nodes, what is the minimum depth of a binary tree?
- At depth d , you can have $\mathrm{N}=2^{\mathrm{d}}$ to $2^{\mathrm{d}+1}-1$ nodes (a full tree)
- So, minimum depth d is: $\log \mathrm{N} \leq \mathrm{d} \leq \log (\mathrm{N}+1)-1$ or $\Theta(\log \mathrm{N})$
$>$ What is the maximum depth of a binary tree?
- Degenerate case: Tree is a linked list!
- Maximum depth = N-1
> Goal: Would like to keep depth at around $\log \mathrm{N}$ to get better performance than linked list for operations like Find.

