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CSE 326: Data Structures
Lecture #8

Balancing Act and
What AVL Stands For

Henry Kautz

Winter Quarter 2002

Beauty is Only Θ(log n) Deep
�

Binary Search Trees are fast if they’ re shallow
e.g.: complete

�
Problems occur when one branch is much longer 
than the other
How to capture the notion of a “ sort of”  complete tree?

Balance

�
Balance

� height(left subtree) - height(right subtree)
� zero everywhere  � perfectly balanced
� small everywhere� balanced enough
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Balance between -1 and 1 everywhere�
maximum height of 1.44 log n

AVL Tree 
Dictionary Data Structure
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�
Binary search tree 
properties

�
Balance property 

� balance = height of left 
child – height of right child

� NULL child has height -1
� balance of every node is:

- 1 ≤ ≤ ≤ ≤ b ≤≤≤≤ 1
� result:

• depth is ΘΘΘΘ( l og n)  
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An AVL Tree
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Not An AVL Tree
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Bad Case #1

Insert(small)

Insert(middle)

Insert(tall)
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Single Rotation
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Basic operation used in AVL trees:

A right child could legally have its parent as its left 
child.

General Case: Insert Unbalances
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General Single Rotation

�
Height of root same as it was before insert!

�
We can stop here!
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Bad Case #2

Insert(small)

Insert(tall)

Insert(middle)
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Will a single rotation 
(bringing T up to the top) 
fix this?

Double Rotation
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General Double Rotation

�
Initially: insert into X unbalances tree (root height goes to h+3)

�
“Zig zag”  to pull up c – restores root height to h+2, left subtree height to h
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Another Double Rotation Case

�
Initially: insert into Y unbalances tree (root height goes to h+2)

�
“Zig zag”  to pull up c – restores root height to h+1, left subtree height to h
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Insert Algorithm
�

Find spot for value
�

Hang new node
�

Search back up looking for imbalance
�

If there is an imbalance:
“outside” : Perform single rotation and exit

“ inside” : Perform double rotation and exit

AVL Insert Algorithm

AVL Insert Algorithm
voi d i nser t ( Compar abl e x,   Node *  & r oot ) {

i f  (  r oot  == NULL )

r oot  = new Node( x) ;

el se i f  ( x  < r oot - >key) {

i nser t (  x,  r oot - >l ef t  ) ;

i f  ( r oot  unbal anced)  {  r ot at e. . .  } }

el se

i nser t (  x,  r oot - >r i ght  ) ;  }

i f  ( r oot  unbal anced)  {  r ot at e. . .  } }

r oot - >hei ght  = max( r oot - >l ef t - >hei ght ,

r oot - >r i ght - >hei ght ) +1;

}

AVL
�

Automatically Virtually Leveled
�

Architecture for inVisible Leveling 
�

Articulating Various Lines
�

Amortizing? Very Lousy!
�

Amazingly Vexing Letters

Adelson-Velskii Landis
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Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to 

the speed of insertion.

Arguments against using AVL trees:

1.  Difficult to program & debug; more space for height info.
2. Asymptotically faster but usually slower in practice!

Pros and Cons of AVL Trees Coming Up
�

Splay trees
�

Get going this weekend on Assignment #3!
�

Read section 4.5
To hand in on Monday:  One paragraph, in your own 

words:

1. How (roughly) do Splay Trees work?

2. What are their advantages?

3. What kind of data would give the very best 
performance for a Splay tree?


