First, a Random Question

1. Theaverage depth of a node in randomly-built
binary search tree on n nodes is O(log n).
» weshowed thisin class
2. Theaverage height of arandomly-built binary search
tree on nnodesis O(log n).
» astronger statement, still true
3. Theaverage height of a binary tree with n nodes is e(ﬁ)

Why is this not contradictory?

Are All Binary Trees Equally
Likely to be Built?

"oy P p o® 6

» How many ways are there to sequence
thenumbers 1, 2, 3?

» Which of the binary trees can be built in
more than one way?

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. SearchisO(log N) since AVL trees are always balanced.

2. The height balancing adds no more than a constant factor to
the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but usually slower in practice!

More Tredlike Data Structures

» Today : Splay Trees
= Fast both in amortized analysis and in practice

« Areused in the kernel of NT for keep track of process
information!

« Invented by Sleator and Tarjan (1985)
= Good “locality”
= Details:
* Weiss4.5 (basic splay trees)
* 11.5 (amortized analysis)
¢ 12.1 (better “top down” implementation)
» Coming up: B-Trees

Splay Trees

“Blind” rebalancing — no height info kept
» amortized timefor all operationsis O(log n)
» worst case timeis O(n)
» insert/find aways rotates node to the root!
= Good locality — most common keys move high in tree

) " Helped
Zi g_zw Unchanged

ea move n to root by series

I d of zig-zag and zig-zig Hurt
rotations, followed by a
final zig if necessary

Y ou're forced to make
areally deep access:

Since you' re down there anyway,
fix up alot of deep nodes!

“Thisisjust a double rotation

Why Splaying Helps
» Node n and its children are always helped (raised)
» Except for final zig, nodesthat are hurt by azig-
zag or zig-zig are later helped by arotation higher
up thetree!
» Result:
= shallow (zig) nodes may increase depth by one or two
= helped nodes may decrease depth by alarge amount
» If anode n on the access path is at depth d before
the splay, it's at about depth d/2 after the splay

= Exceptions are the root, the child of the root, and the
node splayed

Locality Locality

» “Locality” —if an item is accessed, it is likely to be » “Locality” —if anitemis accessed, it islikely to be
accessed again soon accessed again soon
= Why? = \Why?
» Assumem 2 n accessin atree of sizen » Assumem= n accessin atree of sizen
= Total amortized time O(mlog n) = Tota amortized time O(mlog n)
= O(log n) per access on average = O(log n) per access on average
» Suppose only k distinct items are accessed in the m » Suppose only k distinct items are accessed in the m
accesses. accesses.
= TimeisO(mlogk + nlogn) = TimeisO(mlogk + nlogn)

= What would an AVL tree do? = comparewith O(mlogn) for AVL tree

Splaying Example

zig-zig

Find(6)

Almost There, Stay on Target

Still Splaying 6
@
zig-zig
© — 3
® @ ®
(5 @
®@
Splay Again
o .
zig-zag
3 —
Find(4)
@

zig
—
Example Splayed Out
® @
@ @ ®

zig-zag

0 — @G

® ® @

@

Splay Operations: Insert

» Toinsert, could do an ordinary BST insert
= but would not fix up tree
= A BST insert followed by afind (splay)?
» Better idea: do the splay before the insert!
» How?

Splay Operations:. Insert

» Toinsert, could do an ordinary BST insert
= but would not fix up tree
= A BST insert followed by afind (splay)?
> Better idea: do the splay before the insert!
» How?
» Split(T, x) createstwo BSTs L and R:
= al elementsof Tareineither LorR (T =L O R
= al elementsin L are < x
= al elementsin R are> x
= Land Rsharenoelements(L n R = O)
Then how do we do the insert?

Splitting in Splay Trees

» How can we split? (SPOILERS below L)
= We have the splay operation.
= We can find x or the parent of where x should be.
= We can splay it to the root.
= Now, what’s true about the |eft subtree of the root?
= And theright?

Split
Q

split(x)

TN

To split do afind on

x:if xisin T then

splay it to the root,

otherwise splay the OR

last node found to the

root. After splaying

split the tree at the L R L R
root <X > X <X =X

Back to Insert
T
split(x) A A —
<X > X A A
I nsert(x):
Split on x

Join subtrees using x as root!

Splay Operations: Delete

®

find(x CMJ(AA
AR BL

Now what?

Join
» Join(L, R): given two trees such that L < R, merge them

AA=AA=

» Splay on the maximum element in L then attach R

Delete Completed

A= 0N A A

bmaR)l

e

Insert Example

Insert(5)

/©\

@Q @ wiE /® /®
=45,

©
® ©
@ @

Delete Exampl e

(®
@ OXi nd(4 %
—)
@@
© Find max

fo s

Delete(4)

For Wednesday

> Read 4.7

» Y ou should bewell on your way to completing
assignment 3

