
1

Splay

Trees

326 Lecture 9
Henry Kautz

Winter Quarter 2002

First, a Random Question
1. The average depth of a node in randomly-built

binary search tree on n nodes is O(log n).
� we showed this in class

2. The average height of a randomly-built binary search
tree on n nodes is O(log n).

� a stronger statement, still true

3. The average height of a binary tree with n nodes is

Why is this not contradictory?

�
()n

Are All Binary Trees Equally
Likely to be Built?

�How many ways are there to sequence
the numbers 1, 2, 3?

�Which of the binary trees can be built in
more than one way?

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always balanced.
2. The height balancing adds no more than a constant factor to

the speed of insertion.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but usually slower in practice!

Pros and Cons of AVL Trees

More Treelike Data Structures
�Today : Splay Trees

� Fast both in amortized analysis and in practice
• Are used in the kernel of NT for keep track of process

information!
• Invented by Sleator and Tarjan (1985)

� Good “ locality”
� Details:

• Weiss 4.5 (basic splay trees)
• 11.5 (amortized analysis)
• 12.1 (better “ top down” implementation)

�Coming up: B-Trees

Splay Trees

“Blind” rebalancing – no height info kept

� amortized time for all operations is O(log n)

�worst case time is O(n)

� insert/find always rotates node to the root!
� Good locality – most common keys move high in tree

2

Idea

17

10

92

5

3

You’ re forced to make
a really deep access:

Since you’ re down there anyway,
fix up a lot of deep nodes!

move n to root by series
of zig-zag and zig-zig
rotations, followed by a
final zig if necessary

Zig-Zag*

g

X
p

Y

n

Z

W

*This is just a double rotation

n

Y

g

W

p

ZX

Helped

Unchanged

Hurt

up 2

down 1

up 1down 1

Zig-Zig

n

Z

Y

p

X

g

W

g

W

X

p

Y

n

Z

Why Splaying Helps
�Node n and its children are always helped (raised)
�Except for final zig, nodes that are hurt by a zig-

zag or zig-zig are later helped by a rotation higher
up the tree!

�Result:
� shallow (zig) nodes may increase depth by one or two
� helped nodes may decrease depth by a large amount

� If a node n on the access path is at depth d before
the splay, it’s at about depth d/2 after the splay
� Exceptions are the root, the child of the root, and the

node splayed

Locality

� “ Locality” – if an item is accessed, it is likely to be
accessed again soon
� Why?

� Assume m ≥ n access in a tree of size n
� Total amortized time O(m log n)
� O(log n) per access on average

� Suppose only k distinct items are accessed in the m
accesses.
� Time is O(m log k + n log n)
� What would an AVL tree do?

Locality

� “ Locality” – if an item is accessed, it is likely to be
accessed again soon
� Why?

� Assume m ≥ n access in a tree of size n
� Total amortized time O(m log n)
� O(log n) per access on average

� Suppose only k distinct items are accessed in the m
accesses.
� Time is O(m log k + n log n)
� compare with O(m log n) for AVL tree

3

Splaying Example

2

1

3

4

5

6

Find(6)

2

1

3

6

5

4

zig-zig

Still Splaying 6

zig-zig
2

1

3

6

5

4

1

6

3

2 5

4

Almost There, Stay on Target

zig

1

6

3

2 5

4

6

1

3

2 5

4

Splay Again

Find(4)

zig-zag

6

1

3

2 5

4

6

1

4

3 5

2

Example Splayed Out

zig-zag

6

1

4

3 5

2

61

4

3 5

2

Splay Operations: Insert
�To insert, could do an ordinary BST insert

� but would not fix up tree

� A BST insert followed by a find (splay)?

�Better idea: do the splay before the insert!

�How?

4

Splay Operations: Insert
�To insert, could do an ordinary BST insert

� but would not fix up tree
� A BST insert followed by a find (splay)?

�Better idea: do the splay before the insert!
�How?
�Split(T, x) creates two BSTs L and R:

� all elements of T are in either L or R (T = L ∪∪∪∪ R)
� all elements in L are ≤ x
� all elements in R are ≥ x
� L and R share no elements (L ∩∩∩∩ R = ∅∅∅∅)
Then how do we do the insert?

Splitting in Splay Trees

�How can we split? (SPOILERS below ^L)
� We have the splay operation.

� We can find x or the parent of where x should be.

� We can splay it to the root.

� Now, what’s true about the left subtree of the root?

� And the right?

Split
split(x)

T L R

splay

OR

L R L R

≤ x ≥ x> x < x

To split do a find on
x: if x is in T then
splay it to the root,
otherwise splay the
last node found to the
root. After splaying
split the tree at the
root

Back to Insert

split(x)

L R

x

L R

> x< x

I nser t (x) :

Spl i t on x

Joi n subt r ees usi ng x as r oot !

Splay Operations: Delete

find(x)

L R

x

L R

> x< x

delete x

Now what?

Join

� Join(L, R): given two trees such that L < R, merge them

�Splay on the maximum element in L then attach R

L R R

splay L

5

Delete Completed

T

find(x)

L R

x

L R

> x< x

delete x

T - x

Join(L,R)

Insert Example

91

6

4 7

2

Insert(5)

split(5)

9

6

7

1

4

2

1

4

2

9

6

7

1

4

2

9

6

7

5

Delete Example

91

6

4 7

2

Delete(4)

find(4)

9

6

7

1

4

2

1

2

9

6

7

Find max

2

1

9

6

7

2

1

9

6

7

For Wednesday

�Read 4.7

�You should be well on your way to completing
assignment 3

