
1

1

Welcome to CSE 326!
Data Structures

Pick up…
• First day survey
• Copy of lecture slides
• Textbook errata
• Course syllabus

2

Today’s Outline

• Administrative Info

• Survey

• Overview of the Course

• What is an algorithm? ADT? Data structure?

• Review: Stacks and queues

3

Who am I?

Ashish Sabharwal

nth year grad student, CSE [currently n = 6]
Please don’ t call me “professor”… yet!

• Research Theory: Algorithms, complexity
Applications: Solvers for AI,

model checking, etc.

• Teaching TA’ed several courses
My first full class!

4

What’s this tabletPC thing
I’m walking around with?

Classroom Presenter system
- Richard Anderson, Steve Wolfman, et al.

Allows cool stuff such as
• Presenter and viewer modes
• Writing on slides

Still under construction.
Will it fail? I don’ t know…

5

Course Staff and Textbook
• Instructor: Ashish Sabharwal, Allen Center 214, ashish@cs

Office hours: TBD

• Teaching Assistants:
Ethan Phelps-Goodman ethanpg@cs Sections, concepts

Albert J. Wong awong@cs Programming guru,
special tutorials (eg. unix)

Office hours: TBD

• Textbook: Data Structures & Algorithm Analysis in Java
- by Mark Allen Weiss

6

Course Mechanics
• Web page: http://www.cs.washington.edu/326

• Mailing aliases
– announcement list cse326-announce@cs

– discussion list cse326@cs

– staff alias cse326-staff@cs

– subscribe to the listsusing web interface; see webpage

• Course laboratories are 002, 006, 022 Allen Center
– labs have NT machines with X servers to access UNIX

– All programming projects graded on UNIX server attu.cs

– OK to develop using other tools (e.g. under Windows) but make
sure you test under UNIX

2

7

Course Policies
• Written assignments

– Due at the start of class on due date; late homeworks not accepted!

• Programming assignments
– Turned in electronically before 11pm on due date

– Once per quarter: use your “ late day” for extra 24 hours – Must email TA

• Work in teams only on explicit team projects
– Appropriate discussions encouraged – see website

• Approximate Grading
– Assignments: 30%

– Midterm: 20% Monday Nov 3, in class

– Final: 30% Monday Dec 15, in class (2 hours)

– Best of above 3: 10%

– Participation & quizzes: 10%
8

A quick break before we delve
into course material!

• Fill out the survey

• Tell me times that are BAD for office hours

9

Today’s Outline

• Administrative Info

• Survey

• Overview of the Course

• What is an algorithm? ADT? Data structure?

• Review: Stacks and queues

10

What is this Course About?

Clever ways to organize information in order to
enable efficient computation

– What do we mean by clever?

– What do we mean by efficient?

11

Clever? Efficient?

Lists, Stacks, Queues

Heaps

Binary Search Trees

AVL Trees

Hash Tables

Graphs

Disjoint Sets

Insert

Delete

Find

Merge

Shortest Paths

Union

Data Structures Algorithms

12

Used Everywhere!

Mastery of this material
separates you from:

Systems

Theory
Graphics

AI

Applications

• Perhaps the most important course in your CS curriculum!
• Guaranteed non-obsolescence!

3

13

Example 1: Representing Course
Prerequisites

321143

142

322

326

341370

378

401

421

Nodes = courses
Directed edge = prerequisite

“prerequisite for”

14

Example 2: Representing
Expressions in Compilers

x1 = q + y* z

x2 = y* z - q Naive:

Common
Subexpression

Eliminated:

y z

*

-

q

+

q *

x1 x2

y z

-

q

+

q *

x1 x2

Nodes = symbols/operators
Edges = relationships

y*z calculated twice!

15

Example 3: Information
Transmission in a Network

Seattle

New York

L.A.

Tokyo

Sydney

Seoul

Nodes = computers
Edges = transmission rates

128

140

181
30

16

130

16

Efficiency: Asymptotic Complexity

Run the program and measure time:
– Typically insufficient!
– How big is the sample input? What about other inputs?

Our notion of efficiency:
How does the running time of an algorithm scale
with the size of its input?

Several ways to further refine:
– worst case
– average case
– amortized over a series of runs

17

Specific Goals of the Course

• Become familiar with some of the fundamental data
structures in computer science

• Improve ability to solve problems abstractly
– data structures are the building blocks

• Improve ability to analyze your algorithms
– prove correctness
– gauge (and improve) time complexity

• Become modestly skilled with the UNIX operating
system (you’ ll need this in upcoming courses)

18

One Preliminary Hurdle

1. Recall what you learned in CSE 321 …
– proofs by mathematical induction

– proofs by contradiction

– formulas for calculating sums and products of series

– recursion

Know Sec 1.1 – 1.3 of text by heart!

4

19

A Second Hurdle

2. Unix
Experience 1975 all over again!

– Try to login on attu.cs, edit, and compile your
favorite “hello world” program right away

Get help at the UNIX tutorial (tomorrow?)

– Programming Assignment 1 (to be released Wed)

– Bring your questions and frustrations to Section on
Thursday!

20

A Third Hurdle: Java

Publ i c c l ass Set _of _i nt s {

Publ i c voi d i nser t (i nt x) ;

Publ i c voi d r emove(i nt x) ; … }

Review the syntax (see chapter 1)

Run your first program (assignment 1)

21

Java ≠ Data Structures

One of the all time great books in computer science:

The Art of Computer Programming (1968-1973)
by Donald Knuth

Examples in assembly language (and English)!

Very little about Java in class.

Weiss textbook’s code – don’ t get bogged down!

22

Today’s Outline

• Administrative Info

• Survey

• Overview of the Course

• What is an algorithm? ADT? Data structure?

• Stacks and queues

23

What is an Algorithm?

• ???

24

According to …

• According to Mirriam-Webster, an algorithm is …

– a procedure for solving a mathematical problem (as of
finding the greatest common divisor) in a finite number
of steps that frequently involves repetition of an
operation

– (broadly) a step-by-step procedure for solving a
problem or accomplishing some end especially by a
computer

5

25

Concepts vs. Mechanisms
• Abstract

• Pseudocode

• Algorithm
– A sequence of high-level,

language independent
operations, which may act
upon an abstracted view of
data.

• Abstract Data Type (ADT)
– A mathematical description

of an object and the set of
operations on the object.

• Concrete

• Specific programming language

• Program
– A sequence of operations in a specific

programming language, which may
act upon real data in the form of
numbers, images, sound, etc.

• Data structure
– A specific way in which a program’s

data is represented, which reflects the
programmer’s design choices/goals.

26

ADT’svs Data Structures
• List ADT

– Stack ADT
– Queue ADT

• Collection ADT
– Stores objects without

duplicates

• Dictionary ADT
– Stores (Key, Value) pairs
– Alternatively: Maps Keys to

Values

• Priority Queue ADT
– Stores objects, and supports

efficient removal of objects
based upon some kind of
ordering

• Graph ADT
• … and even more!

• Linked List
• Circular Array
• Binary Search Tree
• Splay Tree
• Hash Table
• Leftist Heap
• Skew Heap
• Adjacency Matrix

• … and lots more!

So… which ADT’sdo these
data structures implement?

27

Why So Many Data Structures?

Ideal data structure:

“ fast” , “elegant” , memory efficient

Generates tensions:
– time vs. space

– performance vs. elegance

– generality vs. simplicity

– one operation’s performance vs. another’s

The study of data structures is the study of
tradeoffs. That’s why we have so many of them! 28

ADT Presentation Algorithm
1. Present an ADT
2. Motivate with some applications
3. Repeat until it’s time to move on:

a. analyze its properties
b. develop a data structure and algorithms for the ADT

i. efficiency
ii. correctness
iii. limitations
iv. ease of programming

4. Contrast strengths and weaknesses

29

• Queue operations
– create

– destroy

– enqueue

– dequeue

– is_empty

• Queue property: if x is enQed before y is enQed,
then x will be deQed before y is deQed

FIFO: First In First Out

First Example: Queue ADT

F E D C Benqueue dequeueG A

30

Applications of the Q

• Hold jobs for a printer

• Store packets on network routers

• Make waitlists fair

• Breadth first search

6

31

Circular Array Q Data Structure

enqueue(Obj ect x) {

Q[back] = x ;
back = (back + 1) % si ze

}

b c d e f

Q
0 size - 1

front back

dequeue() {

x = Q[f r ont] ;

f r ont = (f r ont + 1) % si ze;

r et ur n x ; }

How test for empty list?

How to find kth element
in the queue?

What is complexity of
these operations?

Limitations of this
structure?

32

Linked List Q Data Structure

b c d e f

front back

voi d enqueue(Obj ect x) {

i f (i s_empt y())

f r ont = back = new Node(x)

el se

back- >next = new Node(x)

back = back- >next

}

Obj ect dequeue() {

asser t (! i s_empt y)

r et ur n_dat a = f r ont - >dat a

t emp = f r ont

f r ont = f r ont - >next

del et e t emp

r et ur n t emp- >dat a

}

bool i s_empt y() {

r et ur n f r ont == nul l

}

33

Circular Array vs. Linked List

34

Second Example: Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is on the stack before y is
pushed, then x will be popped after y is popped

LIFO: Last In First Out

F

E
D
C
B
A

D E F

C
B
A

35

Stacks in Practice

• Function call stack

• Converting recursion to iteration

• Balancing symbols (parentheses)

• Evaluating Reverse Polish (postfix) Notation

• Depth first search

36

Array Stack Data Structure

S
0 size - 1

f e d c b

voi d push(Obj ect x) {

asser t (! i s_f ul l ())

S[back] = x

back++
}

Obj ect t op() {

asser t (! i s_empt y())

r et ur n S[back - 1]
}

back

Obj ect pop() {

back- -

r et ur n S[back]

}

bool i s_empt y() {

r et ur n back == 0

}

bool i s_f ul l () {

r et ur n back == si ze

}

7

37

Linked List Stack Data Structure

b c d e f

back

voi d push(Obj ect x) {

t emp = back

back = new Node(x)

back- >next = t emp

}

Obj ect t op() {

asser t (! i s_empt y())

r et ur n back- >dat a

}

Obj ect pop() {

asser t (! i s_empt y())

r et ur n_dat a = back- >dat a

t emp = back

back = back- >next

r et ur n r et ur n_dat a

}

bool i s_empt y() {

r et ur n back == nul l

} 38

Data structures you should
already know

• Arrays

• Linked lists

• Queues

• Stacks

39

To Do

• Return your survey before leaving!

• Check out the web page

• Come to the Unix tutorial - TBD

• Sign up for the cse326 mailing lists

• Log on to the PCs in rooms 002, 006 or 022 and
access instructional UNIX server attu.cs
– If you don’ t have a CSE account, sign up today!

• Read 1.1-1.3, Chapters 2 and 3 in the book
– Don’ t worry, it gets better!

