

Today's Outline

- Admin: Office hours, survey results, etc.
- Project 1 - Sound Blaster!
- Asymptotic analysis
- A little bit of math (review text for more)

Office Hours, etc.

Ashish	Mon, Thu	$10: 30-11: 20$	Allen 214
Ethan	Tue	$11: 00-12: 00$	Allen 216
Albert	Fri	$12: 30-1: 20$	Allen 002

Or by appointment.

Survey Results:
 Where do you stand?

- Java: 75% used in 143
60% have other experience
- Unix: 70\% know the basics
- Big-O: 75% have seen the notation in basic form
- Solving recurrences : 65% know basics
- Data structures: linked lists, binary search tree 25% have seen hash tables
- Sorting : 75\%

1. Subscribe to mailing lists if you haven't
2. Mark errata in your copy of textbook

Quick Review

What are the three things that define the stack ADT?
1.
2.
3.

Project 1 - Sound Blaster!

Play your favorite song in reverse!

Aim:

1. Get familiar with UNIX
2. Implement DoubleStack class (base code provided)
3. Write program to reverse a sound file

Due: Wed, Oct 8, 11:00 pm
(hardcopy in Section on Oct 9)

Ashish Takes a Break								
	23	5	16	37	50	73	75	126
bool ArrayFind(int array[], int n, int key) \{ // Insert your algorithm here								

Analysis of Algorithms

- Efficiency measure
- how long the program ru
- how much memory it use
time complexity space complexity
- For today, we'll focus on time complexity only
- Why analyze at all?
- Confidence: algorithm will work well in practice : gives you boss a reason to pay you right away!
- Insight : alternative, better algorithms

Why do we care?

- Most algorithms are fast for small n
- Time difference too small to be noticeable
- External things dominate (OS, disk I/O, ...)
- BUT n is often large in practice
- Databases, internet, graphics, ...
- Time difference really shows up as n grows!

Ashish Takes a Break

bool ArrayFind(int array[], int n, int key) \{
// Insert your algorithm here

Asymptotic Analysis

- Complexity as a function of input size n $\mathrm{T}(n)=4 n+5$ $\mathrm{T}(n)=0.5 n \log n-2 n+7$
$\mathrm{T}(n)=2^{n}+n^{3}+3 n$
- What happens as n grows?

Analysis: Simplifying assumptions

- Ideal single-processor machine (serialized operations)
- "Standard" instruction set (load, add, store, etc.)
- All operations take 1 time unit (including each Java or pseudocode statement)

ATaB: Analyzing Code

Basic Java operations	Constant time
Consecutive statements	Sum of times
Conditionals	Larger branch plus test
Loops	Sum of iterations
Function calls	Cost of function body
Recursive functions	Solve recurrence relation

[^0]

ATaB: Binary Search Analysis

```
bool BinArrayFind( int array[], int s,
    int e, int key )
    // The subarray is empty
    if( s > e ) return false; - Best case:
    // Search this subarray recursively
    int mid = (e + s) / 2;
    if( array[key] == array[mid] ) { - Worst case:
        return true;
    } else if( key < array[mid] ) {
        return BinArrayFind( array, s,
                                mid-1, key );
    } else {
        return BinArrayFind( array, mid+1,
        e, key );
```


Linear Search vs Binary Search

	Linear Search	Binary Search
Best Case		
Worst Case		

So ... which algorithm is better? What tradeoffs can you make?

Fast Computer vs. Slow Computer
Fast Computer vs. Smart Programmer
(round 1)

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is $\mathrm{T}(n)=2 n+1 \in \mathbf{O}(\boldsymbol{n})$
- Binary search is $\mathrm{T}(n)=4 \log _{2} n+2 \boldsymbol{\in} \mathbf{O}(\log \boldsymbol{n})$

Remember: the fastest algorithm has the slowest growing function for its runtime

Order Notation: Definition

$\mathbf{O}(\mathbf{f}(\boldsymbol{n})):$ a set or class of functions
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ iff
There exist consts c and n_{0} such that $\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$

Example:
$100 n^{2}+1000 \leq 5\left(n^{3}+2 n^{2}\right)$ for all $n \geq 19$
So $g(n) \in O(f(n))$

Sometimes, you'll see the notation $\mathrm{g}(n)=\mathrm{O}(\mathrm{f}(n))$. This is equivalent to $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$.
Remember: notation $\mathrm{O}(\mathrm{f}(n))=\mathrm{g}(n)$ is meaningless!

Big-O: Common Names			
	- constant: - logarithmic: - poly-log: - linear: - log-linear: - superlinear: - quadratic: - cubic: - polynomial: - exponential:	$\begin{aligned} & \mathrm{O}(1) \\ & \mathrm{O}(\log n) \\ & \mathrm{O}\left(\log ^{k} \mathrm{n}\right) \\ & \mathrm{O}(\mathrm{n}) \\ & \mathrm{O}(\mathrm{n} \log \mathrm{n}) \\ & \mathrm{O}\left(\mathrm{n}^{1+c}\right) \\ & \mathrm{O}\left(\mathrm{n}^{2}\right) \\ & \mathrm{O}\left(\mathrm{n}^{3}\right) \\ & \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right) \\ & \mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right) \end{aligned}$	$\left(\log _{\mathrm{k}} \mathrm{n}, \log \mathrm{n}^{2} \in \mathrm{O}(\log \mathrm{n})\right)$ (c is a constant >0) (k is a constant) (c is a constant > 1)
25			

Meet the Family

- $\mathrm{O}(\mathrm{f}(n))$ is the set of all functions asymptotically less than or equal to $\mathrm{f}(n)$
- o(f $f(n)$) is the set of all functions asymptotically strictly less than $\mathrm{f}(n)$
- $\Omega(\mathrm{f}(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
$-\omega(\mathrm{f}(n))$ is the set of all functions asymptotically strictly greater than $\mathrm{f}(n)$
- $\theta(\mathrm{f}(n))$ is the set of all functions asymptotically equal to $\mathrm{f}(n)$

Meet the Family, Formally

- $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ iff

There exist c and n_{0} such that $\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$ $-\mathrm{g}(n) \in \mathrm{o}(\mathrm{f}(n))$ iff

There exists a n_{0} such that $\mathrm{g}(n)<c \mathrm{f}(n)$ for all c and $n \geq n_{0}$ Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=0$

- $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$ iff
There exist c and n_{0} such that $\mathrm{g}(n) \geq c \mathrm{f}(n)$ for all $n \geq n_{0}$ $-\mathrm{g}(n) \in \omega(\mathrm{f}(n))$ iff

There exists a n_{0} such that $\mathrm{g}(n)>c \mathrm{f}(n)$ for all c and $n \geq n_{0}$
Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=\infty$

- $\mathrm{g}(n) \in \theta(\mathrm{f}(n))$ iff
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ and $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
O	\leq
Ω	\geq
θ	$=$
o	$<$
ω	$>$

True or False?

Types of Analysis

Two orthogonal axes:

- bound flavor
- upper bound (O, o)
- lower bound (Ω, ω)
- asymptotically tight (θ)
- analysis case
- worst case (adversary)
- average case
- best case
- "amortized"

ATaB: Pros and Cons of Asymptotic Analysis

Math background: Proof by...

- Counterexample
- show an example which does not fit with the theorem
- QED (the theorem is disproven)
- Contradiction
- assume the opposite of the theorem
- derive a contradiction
- QED (the theorem is proven)
- Induction
- prove for a base case (e.g., $\mathrm{n}=1$)
- state hypothesis: assume true for a generic value ($\mathrm{n}=\mathrm{k}$)
- inductive step: prove for the next value $(\mathrm{n}=\mathrm{k}+1)$
- QED (the theorem is proven)

Inductive Proof of Correctness

```
int sum(int v[], int n){
    if (n==0) return 0;
    else return v[n-1] + sum(v,n-1);
}
```

Theorem: $\operatorname{sum}(v, n)$ correctly returns sum of $1^{\text {st }} n$ elements of array v for any n

Base case: Program is correct for $n=0$; returns 0. $\boldsymbol{n} \boldsymbol{\rightarrow}$
Inductive hypothesis $(n=k)$: Assume sum (v, k) returns sum of first k elements of v

Inductive step $(n=k+1): \operatorname{sum}(v, k+1)$ returns $v[k]+\operatorname{sum}(v, k)$, which is the same of the first $k+1$ elements of $v . a$

Asymptotic Analysis Summary

- Determine what characterizes a problem's size
- Express how much resources (time, memory, etc.) an algorithm requires as a function of input size using O()$, \Omega(), \theta()$ [upper, lower, tight bounds]
- worst case
- best case
- average case
- common case
- overall

To Do

- Get working on Project 1
- Due Wed, Oct 8 at 11:00 PM sharp!
- Bring questions to section tomorrow
- Sign up for 326 mailing list(s)
- Mark errata in your textbook
- Continue reading sections 1.1-1.3, 2 and 3
- Also start/skim on next sections:
4.1 introduction to trees
6.1-6.4 priority queues and binary heaps

[^0]: Analyze your code!

