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CSE 326: Data Structures

Topic 2: Asymptotic Analysis

Ashish Sabharwal

Autumn, 2003
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Today’s Outline

• Admin: Office hours, survey results, etc.

• Project 1 – Sound Blaster!

• Asymptotic analysis

• A little bit of math (review text for more)
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Office Hours, etc.

Ashish Mon, Thu 10:30-11:20 Allen 214

Ethan Tue 11:00-12:00 Allen 216

Albert Fri 12:30-1:20 Allen 002

Or by appointment.

TODO : Important!

1. Subscribe to mailing lists if you haven’ t

2. Mark errata in your copy of textbook
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Survey Results: 
Where do you stand?

• Java:     75% used in 143
60% have other experience

• Unix:    70% know the basics
• Big-O:  75% have seen the notation in basic form
• Solving recurrences :  65% know basics

• Data structures:  linked lists, binary search tree
25% have seen hash tables

• Sorting :  75%
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Quick Review

What are the three things that define the stack ADT?

1.

2.

3.
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Project 1 – Sound Blaster!
Play your favorite song in reverse!

Aim:

1. Get familiar with UNIX
2. Implement DoubleStack class

(base code provided)

3. Write program to reverse a sound file

Due: Wed, Oct 8, 11:00 pm

(hardcopy in Section on Oct 9)
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Analysis of Algorithms

• Efficiency measure
– how long the program runs time complexity

– how much memory it uses space complexity
• For today, we’ ll focus on time complexity only

• Why analyze at all?
– Confidence: algorithm will work well in practice

: gives you boss a reason to pay you right away!

– Insight        : alternative, better algorithms
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Asymptotic Analysis

• Complexity as a function of input size n
T(n) = 4n + 5

T(n) = 0.5 n log n - 2n + 7

T(n) = 2n + n3 + 3n

• What happens as n grows?
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Why do we care?
• Most algorithms are fast for small n

– Time difference too small to be noticeable

– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice
– Databases, internet, graphics, …

• Time difference really shows up as n grows!
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Analysis: Simplifying assumptions

• Ideal single-processor machine
(serialized operations)

• “Standard”  instruction set
(load, add, store, etc.)

• All operations take 1 time unit
(including each Java or pseudocode statement)
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Ashish Takes a Break

bool ArrayFind( int array[], int n, 
int key){

// Insert your algorithm here

2 3 5 16 37 50 73 75 126

What algorithm would you choose 
to implement this code snippet? 12

ATaB: Analyzing Code

Basic Java operations

Consecutive statements

Conditionals

Loops

Function calls

Recursive functions

Constant time

Sum of times

Larger branch plus test

Sum of iterations

Cost of function body

Solve recurrence relation

Analyze your code!
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ATaB: Linear Search Analysis
bool LinearArrayFind(int array[],

int n, 

int key ) {

for( int i = 0; i < n; i++ ) {
if( array[i] == key )

// Found it!

return true;

}

return false;

}

• Best Case:

• Worst Case:
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ATaB: Binary Search Analysis

bool BinArrayFind( int array[], int s,
int e, int key ) {

// The subarray is empty
if( s > e ) return false;

// Search this subarray recursively
int mid = (e + s) / 2;
if( array[key] == array[mid] ) {

return true;
} else if( key < array[mid] ) {

return BinArrayFind( array, s, 
mid-1, key );

} else {

return BinArrayFind( array, mid+1,
e, key );

}

• Best case:

• Worst case:
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Solving Recurrence Relations

1. Determine the recurrence relation.  What is the base case(s)?

2. “Expand”  the original relation to find an equivalent general 
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of 
expansions to a value which reduces the problem to a base case
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Linear Search vsBinary Search

Worst Case

Best Case

Binary SearchLinear Search

So … which algorithm is better?
What tradeoffs can you make?
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Fast Computer vs. Slow Computer
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Fast Computer vs. Smart Programmer 
(round 1)
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Fast Computer vs. Smart Programmer 
(round 2)
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Asymptotic Analysis
• Asymptotic analysis looks at the order of the 

running time of the algorithm
– A valuable tool when the input gets “ large”
– Ignores the effects of different machinesor different 

implementationsof the same algorithm

• Intuitively, to find the asymptotic runtime, throw 
away the constants and low-order terms
– Linear search is T(n) = 2n + 1 ∈∈∈∈ O(n)
– Binary search is T(n) = 4 log2n + 2 ∈∈∈∈ O(log n)

Remember: the fastest algorithm has the 
slowest growing function for its runtime
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Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently 
large” , f(n) will be “greater than or equal to”  g(n)

f(n) = n3 + 2n2

g(n) = 100n2 + 1000
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Order Notation: Definition
O( f(n) ) :  a set or class of functions

g(n) ∈ O( f(n) ) iff
There exist constsc and n0 such that g(n) ≤ c f(n) for all n ≥ n0

Example:
100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19
So g(n) ∈ O( f(n) )

Sometimes, you’ ll see the notation g(n) = O(f(n)).  This is 
equivalent to g(n) ∈ O(f(n)).

Remember: notation O(f(n)) = g(n) is meaningless!

23

Order Notation: Example

100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19

So g(n) ∈ O( f(n) ) 24

Set Notation

1.001n + 3n2O( n3 )

45697n 3
- 4n2n2 + 10

100n2 log n

O( 2n )
1.5

n - 100
2n + n1000 6n log n2

Set notation allows us to 
formalize our intuition

O( n3 ) vs. O( 2n )

“ O( f(n) ) is a set  
of functions”

1.1
n2 + 3n2
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Big-O: Common Names

– constant: O(1)
– logarithmic: O(log n) (logkn, log n2 ∈ O(log n))
– poly-log: O(logk n)
– linear: O(n)
– log-linear: O(n log n)
– superlinear: O(n1+c) (c is a constant > 0)
– quadratic: O(n2)
– cubic: O(n3)
– polynomial: O(nk) (k is a constant)
– exponential: O(cn) (c is a constant > 1)
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Meet the Family
• O( f(n) ) is the set of all functions asymptotically 

less than or equal to f(n)
– o( f(n) ) is the set of all functions asymptotically 

strictly less than f(n)

• Ω( f(n) ) is the set of all functions asymptotically 
greater than or equal to f(n)
– ω( f(n) ) is the set of all functions asymptotically 

strictly greater than f(n)

• θ( f(n) ) is the set of all functions asymptotically 
equal to f(n)
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Meet the Family, Formally 

• g(n) ∈ O( f(n) ) iff
There exist c and n0 such that g(n) ≤≤≤≤ c f(n) for all n ≥ n0
– g(n) ∈ o( f(n) ) iff

There exists a n0 such that g(n) < c f(n) for all c and n ≥ n0

• g(n) ∈ Ω( f(n) ) iff
There exist c and n0 such that g(n) ≥≥≥≥ c f(n) for all n ≥ n0
– g(n) ∈ ω( f(n) ) iff

There exists a n0 such that g(n) > c f(n) for all c and n ≥ n0

• g(n) ∈ θ( f(n) ) iff
g(n) ∈ O( f(n) ) and g(n) ∈ Ω( f(n) )

Equivalent to: limn→∞ g(n)/f(n) = 0

Equivalent to: limn→∞ g(n)/f(n) = ∞
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Big-Omega et al. Intuitively

>ω
<o

=θ

≥Ω
≤O

Mathematics RelationAsymptotic Notation
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True or False?

n3 + 4n ∈ ω(n3)

n3 + 4 ∈ o(n4)

n log n ∈ Ω(n2)

n log n ∈ O(2n)

0.00000001 n2 ∈ θ(n2)

10,000 n2 + 25n ∈ θ(n2)  
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Types of Analysis

Two orthogonal axes:

– bound flavor
• upper bound (O, o)

• lower bound (Ω, ω)

• asymptotically tight (θ)

– analysis case
• worst case (adversary)

• average case

• best case

• “amortized”
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ATaB: Pros and Cons of 
Asymptotic Analysis
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Math background: Proof by...
• Counterexample

– show an example which does not fit with the theorem
– QED (the theorem is disproven)

• Contradiction
– assume the opposite of the theorem
– derive a contradiction
– QED (the theorem is proven)

• Induction
– prove for a base case (e.g., n = 1)
– state hypothesis: assume true for a generic value (n = k)
– inductive step: prove for the next value (n = k + 1)
– QED (the theorem is proven)
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Inductive Proof of Correctness
int sum(int v[], int n){

if (n==0) return 0;

else return v[n-1] + sum(v,n-1);

}

Theorem: sum(v,n) correctly returns sum of 1st n elements of 
array v for any n

Base case: Program is correct for n=0; returns 0. ➼

Inductive hypothesis (n=k): Assume sum(v,k) returns sum of 
first k elements of v.

Inductive step (n=k+1): sum(v,k+1) returns v[k]+sum(v,k), 
which is the same of the first k+1 elements of v. ➼
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base case

Assume hypothesis

definition of T(n)

by in

(1) log1

( ) log  

(2 ) ( )  

(2 ) ( log )  

(2 ) ((log ) 1)

(2 ) ((

duction hypothesis

Q.E

log ) (log2))

(2 ) log(2 ) .D.

Thus: (

T b c b

T n b c n

T n T n c

T n b c n c

T n b c n

T n b c n

T n b c n

T n

= + =
= +

= +
= + +
= + +
= + +
= +

) (log )nθ=

Inductive Proof of Complexity:
Binary Search, Worst Case

If you know the closed form solution,
you can validate it by ordinary induction
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Asymptotic Analysis Summary
• Determine what characterizes a problem’s size

• Express how much resources (time, memory, etc.) 
an algorithm requires as a function of input size 
using O( ), Ω( ), θ( )   [upper, lower, tight bounds]

– worst case

– best case

– average case

– common case

– overall
36

To Do
• Get working on Project 1

– Due Wed, Oct 8 at 11:00 PM sharp!
– Bring questions to section tomorrow

• Sign up for 326 mailing list(s)

• Mark errata in your textbook

• Continue reading sections 1.1-1.3, 2 and 3 
– Also start/skim on next sections: 

4.1 introduction to trees
6.1-6.4 priority queues and binary heaps


