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CSE 326: Data Structures

Topic 3: Priority Queues and 
Binary Heaps

Ashish Sabharwal

Autumn, 2003
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Today’s Outline

• Questions on Sound Blaster?  (check updates!)

• Finish Asymptotic Analysis

• Trees Review

• Priority Queues
• (Binary) Heaps

• d-Heaps
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Simplifying Recurrences

Given a recursive equation for the running time,
can sometimes simplify it for analysis.

• For an upper-bound analysis, can optionally simplify to 
something larger, e.g.

T(n) = T(floor(n/2)) + 1 to    T(n) � T(n/2) + 1

• For a lower-bound analysis, can optionally simplify to 
something smaller, e.g.

T(n) = 2T(n/2 + 5) + 1 to T(n) � 2T(n/2) + 1
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The One Page Cheat Sheet

• Calculating series:
e.g.

1. Brute force (Section 1.2.3)

2. Induction (Section 1.2.5)

3. Memorize simple ones!

• Solving recurrences:

e.g.   T(n) = T(n/2) + 1

1. Expansion (example in class)

2. Induction (Section 1.2.5, slides)

3. Telescoping (later…)

• General proofs (Section 1.2.5)
e.g.   How many edges in a tree with n nodes?

1. Counterexample

2. Induction

3. Contradiction
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Tree Review
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root(T):

leaves(T):

children(B):

parent(H):

siblings(E):

ancestors(F):

descendents(G):

subtree(C):

Tree T
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More Tree Terminology
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depth(T):

height(G):

degree(B):

branching factor(T):

Tree T
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Some More Tree Terminology

JIH

GFED

CB

AT is binary if …

T is n-ary if …

T is complete if …

Tree T

How deep is a complete tree with n nodes?
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Back to Queues

• Some applications
– ordering CPU jobs

– simulating events

– picking the next search site

• Problems?
– short jobs should go first
– earliest (simulated time) events should go first
– most promising sites should be searched first
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A New ADT!

Let’s create a new ADT to solve this problem!

What do we need to define this ADT?

F(7) E(5)
D(100) A(4)

B(6)

insert deleteMinG(9) C(3)
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Priority Queue ADT

1. PQueuedata : collection of data with priority

2. PQueueoperations
– create

– destroy

– insert

– deleteMin

– is_empty

3. PQueueproperty: for two elements in the queue, 
x and y, if x has a lower priority value than y, x
will be deleted before y

Note: Often represented
as collection of priorities,
with data implicit
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Applications of the Priority Q

• Hold jobs for a printer in order of length

• Store packets on network routers in order of urgency

• Simulate events with explicit priorities

• Select most frequent symbols for compression

• Sort numbers, picking minimum first

• Anything greedy
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Naïve Priority Q Data Structures

• Unsorted array:
– insert:

– deleteMin:

• Sorted array:
– insert:

– deleteMin:

Of the two, which is likely to be better?
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Another Priority Q Data Structure:
Binary Search Tree
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Average performance
insert:

deleteMin:

Problems
1.

2.
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A Better Priority Q Data Structure:
Binary Heap
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1. Heap-order property
– parent’s key is less than 

children’s keys

– result: minimum is always 
at the top

2. Structure property
– complete tree with fringe 

nodes packed to the left

– result: depth is always 
�(log n); next open 
location always known

How do we find the minimum?
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Nifty Storage Trick: Array
• Index calculations:

– child:

– parent:

– root:

– next free:

0
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DeleteMin
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pqueue.deleteMin()
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Percolate Down – Basic
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Percolate Down – Optimized
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DeleteMin Code (Optimized)
Object deleteMin() {

assert(!isEmpty());

returnVal = Heap[1];

size--;

newPos = 

percolateDown(1,

Heap[size+1]);

Heap[newPos] = 

Heap[size + 1];

return returnVal;

}

int percolateDown(int hole,
Object val) {

while (2*hole <= size) {
left = 2*hole; 
right = left + 1;
if (right � size && 

Heap[right] < Heap[left])
target = right;

else
target = left;

if (Heap[target] < val) {
Heap[hole] = Heap[target];
hole = target;

}
else
break;

}
return hole;

}

runtime:
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Insert
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pqueue.insert(3)
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Percolate Up
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Insert Code
void insert(Object o) {

assert(!isFull());

size++;

newPos =

percolateUp(size,o);

Heap[newPos] = o;

}

int percolateUp(int hole, 
Object val) {

while (hole > 1 &&
val < Heap[hole/2])

Heap[hole] = Heap[hole/2];
hole /= 2;

}
return hole;

}

runtime:
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Other Priority Queue Operations

• decreaseKey
– given a pointer to an object in the queue, reduce its priority value

Solution:  change priority and ____________________________

• increaseKey
– given a pointer to an object in the queue, increase its priority value

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?

24

More Priority Queue Operations

• remove
– given a pointer to an object in the queue, remove it

Solution:  set priority to negative infinity, percolate up to 
root and deleteMin

• buildHeap
Naïve solution:

Running time:

Can we do better?
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BuildHeap: Floyd’s Method

5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!
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BuildHeap: Floyd’s Method
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Finally… 

11710812

9654

23

1

runtime:
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Facts about Heaps

Observations
• finding a child/parent index is a multiply/divide by two

• operations jump widely through the heap

• each percolate step looks at only two new nodes

• inserts are at least as common as deleteMins

Realities
• division/multiplication by powers of two are equally fast

• looking at only two new pieces of data: bad for cache!

• with huge data sets, disk accesses dominate
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A Solution: d-Heaps

• Each node has d children

• Still representableby array

• Good choices for d:
– choose a power of two for 

efficiency
– fit one set of children in a 

cache line
– fit one set of children on a 

memory page/disk block
– optimize performance based 

on # of inserts/removes

3 7 2 8 5 121110 6 9112
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Operations on d-Heap

• Insert       :    runtime =

• deleteMin:   runtime = 

Does this help insert or deleteMin more?

Is this good or bad?
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One More Operation

• Merge two heaps. Ideas?

Can do in �(log n) worst case time.
Next lecture!
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To Do

• Assignments : Project 1 – check updates!

• Reading : Chapter 6

• Admin : Sign up for class email list


