
1

CSE 326: Data Structures

Topic 3: Priority Queues and
Binary Heaps

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline

• Questions on Sound Blaster? (check updates!)

• Finish Asymptotic Analysis

• Trees Review

• Priority Queues
• (Binary) Heaps

• d-Heaps

3

Simplifying Recurrences

Given a recursive equation for the running time,
can sometimes simplify it for analysis.

• For an upper-bound analysis, can optionally simplify to
something larger, e.g.

T(n) = T(floor(n/2)) + 1 to T(n) � T(n/2) + 1

• For a lower-bound analysis, can optionally simplify to
something smaller, e.g.

T(n) = 2T(n/2 + 5) + 1 to T(n) � 2T(n/2) + 1

4

The One Page Cheat Sheet

• Calculating series:
e.g.

1. Brute force (Section 1.2.3)

2. Induction (Section 1.2.5)

3. Memorize simple ones!

• Solving recurrences:

e.g. T(n) = T(n/2) + 1

1. Expansion (example in class)

2. Induction (Section 1.2.5, slides)

3. Telescoping (later…)

• General proofs (Section 1.2.5)
e.g. How many edges in a tree with n nodes?

1. Counterexample

2. Induction

3. Contradiction

�
=

+=
n

i

nn
i

1 2

)1(

5

Tree Review

A

E

B

D F

C

G

IH

LJ MK N

root(T):

leaves(T):

children(B):

parent(H):

siblings(E):

ancestors(F):

descendents(G):

subtree(C):

Tree T

6

More Tree Terminology

A

E

B

D F

C

G

IH

LJ MK N

depth(T):

height(G):

degree(B):

branching factor(T):

Tree T

2

7

Some More Tree Terminology

JIH

GFED

CB

AT is binary if …

T is n-ary if …

T is complete if …

Tree T

How deep is a complete tree with n nodes?
8

Back to Queues

• Some applications
– ordering CPU jobs

– simulating events

– picking the next search site

• Problems?
– short jobs should go first
– earliest (simulated time) events should go first
– most promising sites should be searched first

9

A New ADT!

Let’s create a new ADT to solve this problem!

What do we need to define this ADT?

F(7) E(5)
D(100) A(4)

B(6)

insert deleteMinG(9) C(3)

10

Priority Queue ADT

1. PQueuedata : collection of data with priority

2. PQueueoperations
– create

– destroy

– insert

– deleteMin

– is_empty

3. PQueueproperty: for two elements in the queue,
x and y, if x has a lower priority value than y, x
will be deleted before y

Note: Often represented
as collection of priorities,
with data implicit

11

Applications of the Priority Q

• Hold jobs for a printer in order of length

• Store packets on network routers in order of urgency

• Simulate events with explicit priorities

• Select most frequent symbols for compression

• Sort numbers, picking minimum first

• Anything greedy

12

Naïve Priority Q Data Structures

• Unsorted array:
– insert:

– deleteMin:

• Sorted array:
– insert:

– deleteMin:

Of the two, which is likely to be better?

3

13

Another Priority Q Data Structure:
Binary Search Tree

4

121062

115

8

14

13

7 9

Average performance
insert:

deleteMin:

Problems
1.

2.
14

A Better Priority Q Data Structure:
Binary Heap

201412911

81067

54

2

1. Heap-order property
– parent’s key is less than

children’s keys

– result: minimum is always
at the top

2. Structure property
– complete tree with fringe

nodes packed to the left

– result: depth is always
�(log n); next open
location always known

How do we find the minimum?

15

201412911

81067

54

2

2 4 5 7 6 10 8 11 9 12 14 2012

1 2 3 4 5 6 7 8 9 10 11 12

1

2 3

4 5 6 7

8 9

10 11 12

Nifty Storage Trick: Array
• Index calculations:

– child:

– parent:

– root:

– next free:

0

16

DeleteMin

201412911

81067

54

?
2

201412911

81067

54

2

pqueue.deleteMin()

17

Percolate Down – Basic

1412911

81067

54

20

1412911

81067

520

4

1412911

810207

56

4

1420911

810127

56

4

18

Percolate Down – Optimized

201412911

81067

54

?

201412911

81067

5?

4

201412911

810?7

56

4

201420911

810127

56

4

4

19

DeleteMin Code (Optimized)
Object deleteMin() {

assert(!isEmpty());

returnVal = Heap[1];

size--;

newPos =

percolateDown(1,

Heap[size+1]);

Heap[newPos] =

Heap[size + 1];

return returnVal;

}

int percolateDown(int hole,
Object val) {

while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (right � size &&

Heap[right] < Heap[left])
target = right;

else
target = left;

if (Heap[target] < val) {
Heap[hole] = Heap[target];
hole = target;

}
else
break;

}
return hole;

}

runtime:

20

Insert

201412911

81067

54

2

201412911

81067

54

2

pqueue.insert(3)

?
3

21

Percolate Up

201412911

81067

54

2

? 201412911

8?67

54

2

10

201412911

8567

?4

2

10 201412911

8567

34

2

10

3

3

3

22

Insert Code
void insert(Object o) {

assert(!isFull());

size++;

newPos =

percolateUp(size,o);

Heap[newPos] = o;

}

int percolateUp(int hole,
Object val) {

while (hole > 1 &&
val < Heap[hole/2])

Heap[hole] = Heap[hole/2];
hole /= 2;

}
return hole;

}

runtime:

23

Other Priority Queue Operations

• decreaseKey
– given a pointer to an object in the queue, reduce its priority value

Solution: change priority and ____________________________

• increaseKey
– given a pointer to an object in the queue, increase its priority value

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?

24

More Priority Queue Operations

• remove
– given a pointer to an object in the queue, remove it

Solution: set priority to negative infinity, percolate up to
root and deleteMin

• buildHeap
Naïve solution:

Running time:

Can we do better?

5

25

BuildHeap: Floyd’s Method

5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

27184

96103

115

12

26

BuildHeap: Floyd’s Method

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

27

Finally…

11710812

9654

23

1

runtime:

28

Facts about Heaps

Observations
• finding a child/parent index is a multiply/divide by two

• operations jump widely through the heap

• each percolate step looks at only two new nodes

• inserts are at least as common as deleteMins

Realities
• division/multiplication by powers of two are equally fast

• looking at only two new pieces of data: bad for cache!

• with huge data sets, disk accesses dominate

29

4

9654

23

1

8 1012

7

11

A Solution: d-Heaps

• Each node has d children

• Still representableby array

• Good choices for d:
– choose a power of two for

efficiency
– fit one set of children in a

cache line
– fit one set of children on a

memory page/disk block
– optimize performance based

on # of inserts/removes

3 7 2 8 5 121110 6 9112

30

Operations on d-Heap

• Insert : runtime =

• deleteMin: runtime =

Does this help insert or deleteMin more?

Is this good or bad?

6

31

One More Operation

• Merge two heaps. Ideas?

Can do in �(log n) worst case time.
Next lecture!

32

To Do

• Assignments : Project 1 – check updates!

• Reading : Chapter 6

• Admin : Sign up for class email list

