

New Operation:M erge

G iven tw o heaps, m erge them into one heap

- firstattem pt: inserteach elem ent of the sm allerheap into the larger.
runtime:
- second attem pt: concatenate binary heaps' amays and run buildH eap.
runtime:

LeftistH eaps

Idea:
Focus all heap maintenance work in one sm all part of the heap

Leftistheaps:

1. M ostnodes are on the left
2. A ll the m erging work is done on the right

R ight Path in a Leftist Tree is Short (\#2)

```
C lam}: If the rightpath has r nodes, then the tree has at least
```

 2x-1 nodes.
    ```
    2x-1 nodes.
Proof: (By induction)
Proof: (By induction)
    B ase case :r=1.Tree has at least 2}\mp@subsup{2}{}{1}-1=1\mathrm{ node
    B ase case :r=1.Tree has at least 2}\mp@subsup{2}{}{1}-1=1\mathrm{ node
    Inductive step :assume true forr'< r. Prove fortreew ith rght path at leastr
    Inductive step :assume true forr'< r. Prove fortreew ith rght path at leastr
    1.R ight subtree: rightpath ofr-1 nodes
    1.R ight subtree: rightpath ofr-1 nodes
        => 2r-1}-1\mathrm{ rightsubtree nodes (by induction)
        => 2r-1}-1\mathrm{ rightsubtree nodes (by induction)
    2.Left subtree: also right path of length at leastr-1 boy previous slide)
    2.Left subtree: also right path of length at leastr-1 boy previous slide)
                => 2r-1}-1 leftsubtree nodes (by induction)
                => 2r-1}-1 leftsubtree nodes (by induction)
    Totaltree size: (2r-1}-1)+(\mp@subsup{2}{}{\textrm{r}-1}-1)+1=\mp@subsup{2}{}{\textrm{r}}-
```

 Totaltree size: (2r-1}-1)+(\mp@subsup{2}{}{\textrm{r}-1}-1)+1=\mp@subsup{2}{}{\textrm{r}}-
    ``` \(2^{x}-1\) nodes.
```


LeftistH eap Properties

- H eap-orderproperty
- Parent'spriority is atm ost the childrens' priority
- result: m inim um elem ent is at the root
- Leftistproperty
- Forevery node x, npl(left(x)) \geq npl(right(x))
- result: tree is at leastas "heavy" on the leftas the right

A re leftist trees..
com plete?
balanced?
R ightPath in a Leftist Tree is Short (\#1)

C laim : The rightpath is as short as any in the tree.
Proof: (By contradiction)
Pick a shorterpath:
D $1<\mathrm{D} 2$
npl(4):
npl(R):

Leftist property atx violated!

M erging Tw o LeftistH eaps

- m erge $\left(T_{1}, T_{2}\right)$ retums one leftistheap containing all elem ents of the tw O (distinct) leftistheaps T_{1} and T_{2}

Let's do an exam ple, but first.. O therH eap O perations

- insert?
- deleteM in ?
- buildH eap ?

O perations on LeftistH eaps

- m erge w ith tw o trees of total size $n: \Theta$ (log n)
- insertw ith heap size $\mathrm{n}: \Theta$ (log n)
- pretend node is a size 1 leftistheap
- insentby m erging original heap w ith one node heap

$$
\triangle \bigcirc \xrightarrow{\text { merge }} \wedge
$$

- deleteM in with heap size $\mathrm{n}: \Theta$ (log n$)$
- rem ove and return root
- merge leftand rightsubtrees

O perations on LeftistH eaps

- buildH eap : options are

1. Use Floyd'sm ethod

- butneed pointerbased im plem entation
- unclearhow to traverse right-to-left, bottom -up

2. Don inserts

- Takes $\Theta(n \log n)$ time

3. U se m erge in a sm artw ay!

- (Exercise in yournexthom ew ork)

TODO

- Continue project\#1
- Firstw rilten hom ew ork w illbe outW ednesday
- Finish reading chapter6

