CSE 326: Data Structures

Topic #5: Skew Heaps and Binomial Qs

> Ashish Sabharwal Autumn, 2003

Today's Outline

- Binary Heaps: average runtime of insert
- Leftist Heaps: re-do proof of property #1
- Amortized Runtime
- Skew Heaps
- Binomial Queues
- Comparing Implementations of Priority Qs

2

Binary Heaps: Average runtime of *Insert*

Recall: Insert-in-Binary-Heap(x) {
 Put x in the next available position
 percolateUp(last node)
}

How long does this percolateUp(last node) take? – Worst case: Θ (tree height), i.e. $\Theta(\log n)$ – Average case: $\Theta(1)$ Why??

Average runtime of insert in binary heap = $\Theta(1)$

A Twist in Complexity Analysis: The Amortized Case

If a sequence of M operations takes O(M f(n)) time, we say the amortized runtime is O(f(n)).

- Worst case time *per operation* can still be large, say O(*n*)
- Worst case time for any sequence of M operations is O(M f(n))
- Average time *per operation* for *any* sequence is O(f(n))

Is this the same as average time?

Skew Heaps

Problems with leftist heaps

- extra storage for npl
- extra complexity/logic to maintain and check npl
- two pass iterative merge (requires stack!)
- right side is "often" heavy and requires a switch

Solution: skew heaps

- blind adjusting version of leftist heaps
- merge always switches children when fixing right path
- iterative method has only one pass
- amortized time for merge, insert, and delete Min is $\Theta(\log n)$
- however, worst case time for all three is $\Theta(n)$

