

Binary Heaps:
 Average runtime of Insert

Recall: Insert-in-Binary-Heap $(x)\{$
Put x in the next available position percolateUp(last node)
\}

How long does this percolateUp(last node) take?

- Worst case: $\quad \Theta$ (tree height), i.e. $\Theta(\log n)$
- Average case: $\quad \Theta(1) \quad$ Why??

Average runtime of insert in binary heap $=\boldsymbol{\Theta}(1)$

A Twist in Complexity Analysis: The Amortized Case

If a sequence of M operations takes $\mathbf{O}(\mathbf{M} f(n))$ time, we say the amortized runtime is $O(f(n))$.

- Worst case time per operation can still be large, say $\mathrm{O}(n)$
- Worst case time for any sequence of M operations is $\mathrm{O}(\mathrm{Mf}(n))$
- Average time per operation for any sequence is $\mathrm{O}(\mathrm{f}(n))$

Is this the same as average time?

Today's Outline

- Binary Heaps: average runtime of insert
- Leftist Heaps: re-do proof of property \#1
- Amortized Runtime
- Skew Heaps
- Binomial Queues
- Comparing Implementations of Priority Qs

Right Path in a Leftist Tree is Short (\#1)

Claim: The right path is as short as any in the tree.
Proof: (By contradiction)

Pick a shorter path: $\mathrm{D}_{1}<\mathrm{D}_{2}$ Say it diverges from right path at x
$\begin{array}{ll}n p l(\mathrm{~L}) \leq \mathrm{D}_{1}-1 & \begin{array}{l}\text { because of the path of } \\ \\ \text { length } \mathrm{D}_{1}-1 \text { to null }\end{array} \\ n p l(\mathrm{R}) \geq \mathrm{D}_{2}-1 & \text { because every node on }\end{array}$ right path is leftist

Leftist property at x violated!

Skew Heaps

Problems with leftist heaps

- extra storage for npl
- extra complexity/logic to maintain and check npl
- two pass iterative merge (requires stack!)
- right side is "often" heavy and requires a switch

Solution: skew heaps

- blind adjusting version of leftist heaps
- merge always switches children when fixing right path
- iterative method has only one pass
- amortized time for merge, insert, and deleteMin is $\Theta(\log n)$
- however, worst case time for all three is $\Theta(n)$

Skew Heap Code

```
void merge (heap1, heap2) {
    case {
        heap1 == NULL: return heap2;
        heap2 == NULL: return heap1;
        heap1.findMin() < heap2.findMin():
            temp = heap1.right;
            heap1.right = heap1.left;
            heap1.left = merge (heap2, temp);
            return heap1;
        otherwise
            return merge(heap2, heap1);
    }
}
```


Runtime Analysis: Worst-case and Amortized

- No worst case guarantee on right path length!
- All operations rely on merge
\Rightarrow worst case complexity of all ops $=$
- Will do amortized analysis later in the course (see chapter 11 if curious)
- Result: M merges take time $M \log n$
\Rightarrow amortized complexity of all ops $=$

ATaB: Comparing Heaps

- Binary Heaps
- Leftist Heaps
- d-Heaps
- Skew Heaps

Yet Another Data Structure: Binomial Queues

- Structural property
- Forest of binomial trees with at most one tree of any height

What's a forest?

What's a binomial tree?

- Order property
- Each binomial tree has the heap-order property

My opinion: Beautiful and elegant! 12

The Binomial Tree, B_{h}

- B_{h} has height h and exactly 2^{h} nodes
- B_{h} is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly h children
- Number of nodes at depth d is binomial coeff. $\binom{h}{d}$ - Hence the name; we will not use this last property

Binomial Q with n elements

Binomial Q with n elements has a unique structural representation in terms of binomial trees!

Write n in binary: $n=1101_{(\text {base 2) }}=13_{\text {(base 10) }}$

Operations on Binomial Q

- Will again define merge as the base operation - insert, deleteMin, buildBinomialQ will use merge
- Can we do increaseKey efficiently? decreaseKey?
- What about findMin?

Merging Two Binomial Qs

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 1 to maxheight $\{$
a. $\quad m \leftarrow$ total number of B_{k} 's in the two BQs \# of 1's
b. if $\mathrm{m}=0$: continue; $0+0=0$
c. if $m=1$: continue; $\quad 1+0=1$
d. if $m=2$: combine the two B_{k} 's to form a $\mathrm{B}_{k+1}-1+1=1+\mathrm{c}$
e. if $m=3: \begin{aligned} & \text { retain one } \mathrm{B}_{k} \text { and } \\ & \text { combine the other two to form a } \mathrm{B}_{k+1}\end{aligned}$ \}

Claim: When this process ends, the forest
has at most one tree of any height

Complexity of Merge

Constant time for each height
Max height is $\log n$
\Rightarrow worst case running time $=\Theta(\quad)$
Insert in a Binomial Q
Insert (x) : Similar to leftist or skew heap
runtime $\left.\begin{array}{l}\text { Worst case complexity: same as merge } \\ \Theta(\quad) \\ \begin{array}{l}\text { Average case complexity: } \quad \Theta(1) \\ \text { Why?? Hint: Think of adding } 1 \text { to } 1101 \\ \end{array} \\ \hline\end{array}\right)$

deleteMin in Binomial Q

deleteMin: Similar to leftist and skew heaps
A tiny bit more complicated

deleteMin: Example

Result:

> runtime:

To Do

- Project \#1 due tonight!
- Bring printout to section tomorrow
- Written homework \#1
- will be out later today; I'll send an email
- Revise binary search tree basics
- Begin reading chapter 4 in the book

