
1

CSE 326: Data Structures

Topic #5:
Skew Heaps and Binomial Qs

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline

• Binary Heaps: average runtime of insert

• Leftist Heaps: re-do proof of property #1

• Amortized Runtime
• Skew Heaps
• Binomial Queues

• Comparing Implementations of Priority Qs

3

Binary Heaps:
Average runtime of Insert

Recall: Insert-in-Binary-Heap(x) {
Put x in the next available position
percolateUp(last node)

}

How long does this percolateUp(last node) take?
– Worst case:

�
(tree height), i.e.

�
(log n)

– Average case:
�

(1) Why??

Average runtime of insert in binary heap = � (1)
4

Right Path in a Leftist Tree is Short (#1)

Claim: The right path is as short as any in the tree.
Proof: (By contradiction)

R

x

L
D2

D1

Pick a shorter path: D1 < D2

Say it diverges from right path at x

npl(L) ≤ D1-1 because of the path of
length D1-1 to null

npl(R) ≥ D2-1 because every node on
right path is leftist

Leftist property at x violated!

5

A Twist in Complexity Analysis:
The Amortized Case

If a sequence of M operations takes O(M f(n)) time,
we say the amortized runtime is O(f(n)).

Is this the same as average time?

• Worst case time per operation can still be large, say O(n)
• Worst case time for any sequence of M operations is O(M f(n))

• Average time per operation for any sequence is O(f(n))

6

Skew Heaps
Problems with leftist heaps

– extra storage for npl

– extra complexity/logic to maintain and check npl

– two pass iterative merge (requires stack!)

– right side is “often” heavy and requires a switch

Solution: skew heaps
– blind adjusting version of leftist heaps

– merge always switches children when fixing right path

– iterative method has only one pass

– amortized time for merge, insert, and deleteMin is
�

(log n)

– however, worst case time for all three is
�

(n)

2

7

Merging Two Skew Heaps

a

L1 R1

b

L2 R2

merge
T1

T2

a < b

a

L1

merge

b

L2 R2

R1

Only one step per iteration, with children always switched
8

Example

1210

5

87

3

14

merge

7

3

14
1210

5

8

merge
7

3

1410

5

8

merge
12

7

3

14108

5

12

9

Skew Heap Code

void merge(heap1, heap2) {

case {

heap1 == NULL: return heap2;

heap2 == NULL: return heap1;

heap1.findMin() < heap2.findMin():

temp = heap1.right;

heap1.right = heap1.left;

heap1.left = merge(heap2, temp);

return heap1;

otherwise:

return merge(heap2, heap1);

}

}

10

Runtime Analysis:
Worst-case and Amortized

• No worst case guarantee on right path length!

• All operations rely on merge

� worst case complexity of all ops =

• Will do amortized analysis later in the course
(see chapter 11 if curious)

• Result: M merges take time M log n

� amortized complexity of all ops =

11

ATaB: Comparing Heaps

• Binary Heaps

• d-Heaps

• Leftist Heaps

• Skew Heaps

Still scope for improvement!
12

Yet Another Data Structure:
Binomial Queues

• Structural property
– Forest of binomial trees with at most

one tree of any height

• Order property
– Each binomial tree has the heap-order property

What’s a forest?

What’s a binomial tree?

My opinion: Beautiful and elegant!

3

13

The Binomial Tree, Bh

• Bh has height h and exactly 2h nodes

• Bh is formed by making Bh-1 a child of another Bh-1

• Root has exactly h children

• Number of nodes at depth d is binomial coeff.
– Hence the name; we will not use this last property

��
�

�
��
�

�

d

h

B0 B1 B2 B3

14

Binomial Q with n elements

Binomial Q with n elements has a unique structural
representation in terms of binomial trees!

Write n in binary: n = 1101 (base 2) = 13 (base 10)

1 B3 1 B2 No B1 1 B0

15

Properties of Binomial Q

• At most one binomial tree of any height

• n nodes � binary representation is of size ?
� deepest tree has height ?
� number of trees is ?

Define: height(forest F) = maxtree T in F { height(T) }

Binomial Q with n nodes has height � (log n)

16

Operations on Binomial Q

• Will again define merge as the base operation
– insert, deleteMin, buildBinomialQ will use merge

• Can we do increaseKey efficiently?
decreaseKey?

• What about findMin?

17

Merging Two Binomial Qs

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 1 to maxheight {

a. m ← total number of Bk’ s in the two BQs
b. if m=0: continue;
c. if m=1: continue;
d. if m=2: combine the two Bk’ s to form a Bk+1

e. if m=3: retain one Bk and
combine the other two to form a Bk+1

}
Claim: When this process ends, the forest

has at most one tree of any height

of 1’s
0+0 = 0
1+0 = 1
1+1 = 1+c
1+1+c = 1+c

18

Complexity of Merge

Constant time for each height

Max height is log n

� worst case running time = � ()

4

19

Insert in a Binomial Q

Insert(x): Similar to leftist or skew heap

runtime

Worst case complexity: same as merge
� ()

Average case complexity: � (1)

Why?? Hint: Think of adding 1 to 1101

20

deleteMin in Binomial Q

deleteMin: Similar to leftist and skew heaps

A tiny bit more complicated

21

deleteMin: Example

4

8

3

7

5

7BQ

8

3

7

5

find and delete
smallest root

merge without
the shaded part

BQ’

22

deleteMin: Example

8

4

7

5

7
Result:

runtime:

23

buildBinomialQ

Call insert n times on an initially empty BQ

runtime: naïve O(n log n)

careful analysis � (n)

idea: count the number of times
one needs to combine trees

24

To Do

• Project #1 due tonight!
– Bring printout to section tomorrow

• Written homework #1
– will be out later today; I’ ll send an email

• Revise binary search tree basics

• Begin reading chapter 4 in the book

