CSE 326: Data Structures
Topic #5: Binary Search Trees

Ashish Sabharwal
Autumn, 2003

Today’ s Outline

e Admin: Written homework #1 is out!

* Quick Tree Review

* Binary Trees

* Dictionary ADT / Search ADT
* Binary Search Trees

Tree Calculations

Recall: height is max number
of edges from root to a leaf

Find the height of thetree...

runtime:

Tree Calculations Example

How high isthistree? 0

More Recursive Tree Caculations;
Tree Traversals

A traversal isan order for
visiting all the nodes of atree ©

Three types: ® G
« Pre-order: Root, |eft subtree, right subtree é e

¢ In-order: Left subtree, root, right subtree X
(an expression tree)

« Post-order: Left subtree, right subtree, root

Binary Trees

* Binary treeis

— aroot

— left subtree (maybe empty) 0
— right subtree (maybe empty)

, ©
* Representation:
G

Data @ @
left | right e @

pointer | pointer

Binary Tree: Representation

A

left [right
intepoint e

B c (®) ©

left ‘righl left ‘right
intexpointe)0i Ntetpoint
\ /) ©® ©®06G
\
\
\ p—
D E B F
left ‘righl left ‘righl left ‘righl
illlﬂp‘)il‘ll intepoint i i

TITT TN

Binary Tree: Specia Cases

® ® gl
OO0 ©OOO @,@@
® O

Complete Tree Perfect Tree

Binary Tree: Some Numbers!

For binary tree of height h:
— max # of leaves:

— max # of nodes:
— min # of leaves:

— min # of nodes:

What's the average tree height for n nodes, assuming
all distinct trees of n nodes are equally likely?

e\t The Search ADT

e Data
— unique user-specified + Ry
keys insert(Grill) AN Simmer
« Puree
— Or: aset of keys . Brase
. * Poach
* Operations: find(Beke) . sea'
— Insert (key) T vorrouns . Stirfry
— Find (key) * Roast
« Checks for membership
— Remove (key)

The Search ADT is sometimes called

the“ Set ADT”
11

Full Tree
8
ADTs Seen So Far
o Stack o List
— Push — Insert
— Pop — Remove
— Find
* Queue
— Engueue + Priority Queue
— Degueue — Insert
— DeleteMin
Remember decreaseKey?
10
\ ..
weN: The Dictionary ADT
PV;O
+ Daa + asisn@cs
Ashish Sabharwal,
— values mapped to insert(ashish...) instructor for CSE326,
uw_speciﬁed keys hoping to graduate soon!
— Or: asetof . dhepg@os
(key, value) pairs Ethan Phel ps-Goodman,
TA for CSE326,
. find(ethanpg) new grad student
* Operations: + ethan
— Insert (key, value) Ethan..., new grad...; , awong@cs
. Albert Jongkit Wong,
— Find (key) TA for CSE326,
— Remove (key) 5 year undergrad

The Dictionary ADT is sometimes

An easy extension of the Search ADT! called the MapszT

A Modest Few Uses

e Sets

« Dictionaries

* Networks : Router tables
« Operating systems : Pagetables

« Compilers : Symbol tables

Probably the most widely used ADT!

Naive |mplementations

insert find delete

» Unsorted Linked-list
» Unsorted array

» Sorted array

What limits the performance? i

Binary Search Tree Data Structure

 Structura property
— each node has < 2 children
— result:
* storageis small
« operationsaresimple

« average depth is small ﬂ ﬂ
* Order property

— al keysin left subtree smaller

than root’s key
— dl keysinright subtree larger éD

than root’s key
— result: easy to find any given key

@

« What must | know about what | store?

Example and Counter-Example

@ (8)

¢ @@@éi\@/@é)
€
@

BINARY SEARCH TREE NOT A
BINARY SEARCH TREE 1

Find in BST, Recursive

Node Find(Object key,
Node root) {
if (root == NULL)
return NULL;

if (key < root.key)
return Find(key,
root.left);
else if (key > root.key)
return Find(key,

el se

. return root;
Runtime: }

root.right);

Find in BST, Iterative

Node Fi nd(Ohject key,

Node root) {
while (root != NULL &&
root. key != key) {
if (key < root.key)
root = root.left;
el se @ @

root = root.right;
}

@

return root;

}

Runtime:

Binary Search vs. Binary Search Tree

[2]5] 7] 9]10[15]17]20]30]

find(9)
find(2)
find(20)
find(15)

A well balanced binary search tree
allows O(log n) time binary search!

Insertin BST

©
Insert(13)
® (3D
@ @
6 6

Insertions happen only
at the leaves — easy!

Runtime:

20

BuildTreefor BST
* Supposekeys 1,2, 3,4,5,6,7,8,9areinserted into
an initially empty BST.
Runtime depends on the order!
— in given order

— inreverse order

— median first, then left median, right median, etc.

21

Analysis of BuildTree

* Worgt case: O(n?) as we' ve seen
« Average case assuming all orderings equally likely:
— Sum of al depths:
« D(n) =D(i) +D(n—i—-1)+(n-1)

— Average depth of a node:

— Total runtime:

Bonus: FindMin/FindM ax

¢ Find minimum

* Find maximum /®\
®@ @
& @%

23

Deletionin BST

Why might deletion be harder than insertion?

Lazy Deletion

Instead of physically deleting
nodes, just mark them as
deleted

+ simpler
+ physical deletions done in batches ®
+ some adds just flip deleted flag

— extramemory for deleted flag
— many lazy deletions slow finds @

— some operations may have to be
modified (e.g., min and max)

25

Lazy Deletion

Delete(17)
Delete(15) /@\
Delete(5) S

Find(9) @ @

Find(16) é

Insert(5)

Find(17)

26

Non-lazy Deletion — The Leaf Case

Delete(17)

To oo

27

Deletion — The One Child Case

Delete(15) /®\
AN

&

& @@

Deletion — The Two Child Case

Delete(5) /6/\
® 6 @
/
@
What can we replace 5 with?

What happens to that other node? 29

Deletion — The Two Child Case

Idea: Replace the deleted node with avalue
guaranteed to be between the two child subtrees!

Options:
* succ from right subtree: findMin(t.right)
* pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred
* Leaf or one child case — easy!

Finaly...

ToDo

7 replaces 5 /@K

» Start Homework #1
— Somewhat long but easy

— Will get you hands on practice with Math background
and heaps
@ ©
» Read chapter 4 in the book
Original node containing
7 gets deleted

31

32

