
1

CSE 326: Data Structures

Topic #5: Binary Search Trees

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline

• Admin: Written homework #1 is out!

• Quick Tree Review

• Binary Trees

• Dictionary ADT / Search ADT
• Binary Search Trees

3

Tree Calculations

Recall: height is max number
of edges from root to a leaf

Find the height of the tree...

t

runtime:

4

Tree Calculations Example

A

E

B

D F

C

G

IH

KJ L

M

L

N

How high is this tree?

5

More Recursive Tree Calculations:
Tree Traversals

A traversal is an order for
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

6

Binary Trees
• Binary tree is

– a root
– left subtree (maybe empty)
– right subtree (maybe empty)

• Representation:

A

B

D E

C

F

HG

JI

Data

right
pointer

left
pointer

2

7

Binary Tree: Representation

A
right

pointer
left

pointer A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

8

Binary Tree: Special Cases

A

B

D E

C

GF

IH

A

B

D E

C

F

A

B

D E

C

GF

Full Tree

Complete Tree Perfect Tree

9

Binary Tree: Some Numbers!

For binary tree of height h:
– max # of leaves:

– max # of nodes:

– min # of leaves:

– min # of nodes:

What’s the average tree height for n nodes, assuming
all distinct trees of n nodes are equally likely?

10

ADTsSeen So Far

• Stack
– Push

– Pop

• Queue
– Enqueue

– Dequeue

Remember decreaseKey?

• List
– Insert

– Remove

– Find

• Priority Queue
– Insert

– DeleteMin

11

The Search ADT

• Data:

– unique user-specified
keys

– Or: a set of keys

• Operations:

– Insert (key)

– Find (key)
• Checks for membership

– Remove (key)

• Fry

• Simmer

• Puree

• Braise

• Poach

• Sear

• Stirfry

• Roast

insert(Grill)

find(Bake)

NOT FOUND

New!

The Search ADT is sometimes called
the “ Set ADT”

12

The Dictionary ADT

• Data:
– valuesmapped to

user-specified keys

– Or: a set of
(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)
The Dictionary ADT is sometimes

called the “ Map ADT”

Also New!

• ashish@cs

Ashish Sabharwal,
instructor for CSE326,
hoping to graduate soon!

• ethanpg@cs
Ethan Phelps-Goodman,
TA for CSE326,
new grad student

• awong@cs
Albert Jongkit Wong,
TA for CSE326,
5th year undergrad

insert(ashish…)

find(ethanpg)
• ethan

Ethan…, new grad…

An easy extension of the Search ADT!

3

13

A Modest Few Uses

• Sets

• Dictionaries

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!

14

Naïve Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind

What limits the performance?

15

Binary Search Tree Data Structure

4

121062

115

8

14

13

7 9

• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtreesmaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?
16

Example and Counter-Example

3

1171

84

5

4

181062

115

8

20

21BINARY SEARCH TREE NOT A
BINARY SEARCH TREE

7

15

17

Find in BST, Recursive

Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)

return Find(key,

root.left);

else if (key > root.key)

return Find(key,

root.right);

else

return root;

}

2092

155

10

307 17

Runtime:

18

Find in BST, Iterative

Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root.left;

else

root = root.right;

}

return root;

}

2092

155

10

307 17

Runtime:

4

19

Binary Search vs. Binary Search Tree

2 5 7 9 10 15 17 20 30

find(9)
find(2)
find(20)
find(15)

A well balanced binary search tree
allows O(log n) time binary search!

20

Insert in BST

2092

155

10

307 17

Runtime:

Insert(13)
Insert(8)
Insert(31)

Insertions happen only
at the leaves – easy!

21

BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into
an initially empty BST.

Runtime depends on the order!

– in given order

– in reverse order

– median first, then left median, right median, etc.

22

Analysis of BuildTree

• Worst case: O(n2) as we’ve seen

• Average case assuming all orderings equally likely:
– Sum of all depths:

• D(n) = D(i) + D(n – i – 1) + (n – 1)

=

– Average depth of a node:

– Total runtime:

23

Bonus: FindMin/FindMax

• Find minimum

• Find maximum
2092

155

10

307 17

24

Deletion in BST

2092

155

10

307 17

Why might deletion be harder than insertion?

5

25

Lazy Deletion

Instead of physically deleting
nodes, just mark them as
deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be

modified (e.g., min and max)

2092

155

10

307 17

26

Lazy Deletion

2092

155

10

307 17

Delete(17)

Delete(15)

Delete(5)

Find(9)

Find(16)

Insert(5)

Find(17)

27

Non-lazy Deletion – The Leaf Case

2092

155

10

307 17

Delete(17)

28

Deletion – The One Child Case

2092

155

10

307

Delete(15)

29

Deletion – The Two Child Case

3092

205

10

7

Delete(5)

What can we replace 5 with?

What happens to that other node? 30

Deletion – The Two Child Case

Idea: Replace the deleted node with a value
guaranteed to be between the two child subtrees!

Options:

• succ from right subtree: findMin(t.right)

• pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

• Leaf or one child case – easy!

6

31

Finally…

3092

207

10

7 replaces 5

Original node containing
7 gets deleted

32

To Do

• Start Homework #1
– Somewhat long but easy

– Will get you hands on practice with Math background
and heaps

• Read chapter 4 in the book

