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CSE 326: Data Structures

Topic #5: Binary Search Trees

Ashish Sabharwal

Autumn, 2003
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Today’s Outline

• Admin:    Written homework #1 is out!

• Quick Tree Review

• Binary Trees

• Dictionary ADT / Search ADT
• Binary Search Trees
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Tree Calculations

Recall: height is max number 
of edges from root to a leaf

Find the height of the tree...
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Tree Calculations Example
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How high is this tree?
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More Recursive Tree Calculations:
Tree Traversals

A traversal is an order for 
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root
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(an expression tree)
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Binary Trees
• Binary tree is

– a root
– left subtree (maybe empty) 
– right subtree (maybe empty) 

• Representation:
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Binary Tree: Representation
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Binary Tree: Special Cases
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Binary Tree: Some Numbers!

For binary tree of height h:
– max # of leaves: 

– max # of nodes:

– min # of leaves:

– min # of nodes:

What’s the average tree height for n nodes, assuming 
all distinct trees of n nodes are equally likely?
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ADTsSeen So Far

• Stack
– Push

– Pop

• Queue
– Enqueue

– Dequeue

Remember decreaseKey?

• List
– Insert

– Remove

– Find

• Priority Queue
– Insert

– DeleteMin
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The Search ADT

• Data:

– unique user-specified 
keys

– Or: a set of keys

• Operations:

– Insert (key)

– Find (key)
• Checks for membership

– Remove (key)

• Fry

• Simmer

• Puree

• Braise

• Poach

• Sear

• Stirfry

• Roast

insert(Grill)

find(Bake)

NOT FOUND

New!

The Search ADT is sometimes called 
the “ Set ADT”
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The Dictionary ADT

• Data:
– valuesmapped to 

user-specified keys

– Or: a set of
(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)
The Dictionary ADT is sometimes 

called the “ Map ADT”

Also New!

• ashish@cs

Ashish Sabharwal, 
instructor for CSE326,
hoping to graduate soon!

• ethanpg@cs
Ethan Phelps-Goodman,
TA for CSE326,
new grad student

• awong@cs
Albert Jongkit Wong,
TA for CSE326,
5th year undergrad

insert(ashish…)

find(ethanpg)
• ethan

Ethan…, new grad… 

An easy extension of the Search ADT!
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A Modest Few Uses

• Sets

• Dictionaries

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!
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Naïve Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind

What limits the performance?
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Binary Search Tree Data Structure

4

121062

115

8

14

13

7 9

• Structural property
– each node has ≤ 2 children
– result:

• storage is small
• operations are simple
• average depth is small

• Order property
– all keys in left subtreesmaller

than root’s key
– all keys in right subtree larger

than root’s key
– result: easy to find any given key

• What must I know about what I store?
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Example and Counter-Example
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Find in BST, Recursive

Node Find(Object key,

Node root) {

if (root == NULL)

return NULL;

if (key < root.key)

return Find(key,

root.left);

else if (key > root.key)

return Find(key,

root.right);

else

return root;

}
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Runtime:
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Find in BST, Iterative

Node Find(Object key,

Node root) {

while (root != NULL &&

root.key != key) {

if (key < root.key)

root = root.left;

else 

root = root.right;

}

return root;

}
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Runtime:
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Binary Search vs. Binary Search Tree

2 5 7 9 10 15 17 20 30

find(9)
find(2)
find(20)
find(15)

A well balanced binary search tree
allows O(log n) time binary search!
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Insert in BST
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Runtime:

Insert(13)
Insert(8)
Insert(31)

Insertions happen only 
at the leaves – easy!
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BuildTree for BST

• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted into 
an initially empty BST. 

Runtime depends on the order!

– in given order

– in reverse order

– median first, then left median, right median, etc. 
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Analysis of BuildTree

• Worst case: O(n2) as we’ve seen

• Average case assuming all orderings equally likely:
– Sum of all depths:

• D(n)  = D(i)  + D(n – i – 1) + (n – 1)

= 

– Average depth of a node:

– Total runtime:
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Bonus: FindMin/FindMax

• Find minimum

• Find maximum
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Deletion in BST
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Why might deletion be harder than insertion?
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Lazy Deletion

Instead of physically deleting 
nodes, just mark them as 
deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag

– extra memory for deleted flag
– many lazy deletions slow finds
– some operations may have to be 

modified (e.g., min and max)

2092

155

10

307 17

26

Lazy Deletion
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Delete(17)

Delete(15)

Delete(5)

Find(9)

Find(16)

Insert(5)

Find(17)
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Non-lazy Deletion – The Leaf Case
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Delete(17)
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Deletion – The One Child Case
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Delete(15)
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Deletion – The Two Child Case

3092
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Delete(5)

What can we replace 5 with?

What happens to that other node? 30

Deletion – The Two Child Case

Idea: Replace the deleted node with a value 
guaranteed to be between the two child subtrees!

Options:

• succ from right subtree: findMin(t.right)

• pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred

• Leaf or one child case – easy!
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Finally… 

3092
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10

7 replaces 5

Original node containing
7 gets deleted
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To Do

• Start Homework #1
– Somewhat long but easy

– Will get you hands on practice with Math background 
and heaps

• Read chapter 4 in the book


