CSE 326: Data Structures

Topic #7: AVL Trees

Ashish Sabharwal
Autumn, 2003

Today’ s Outline

e Quiz#2
» Note: Chapter 4 has quite afew corrections!
See errata.

« Balancein Binary Search Trees
* AVL Trees

Balanced BST

Observation
¢ BST: the shallower the better!
¢ For aBST with n nodes
— Average height is ©(log n)
— Worst case height is ©(n)
¢ Simplecasessuch asinsert(l, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensuresdepthis©(logn) - strong enough!
2. iseasy to maintain - not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root
have equal number of nodes

2. Left and right subtrees of the root
have equal height

Potential Balance Conditions

3. Left and right subtrees of every node
have equal number of nodes

4. Léeft and right subtrees of every node
have equal height

The AVL Baance Condition

Left and right subtrees of every node
have heights differing by at most 1

Define: balance(x) = height(x.left) — height(x.right)
AVL property: —1 <balance(x) <1, for every nodex

» Ensures small depth

— Will prove this by showing that an AVL tree of height
h must have alot of (i.e. ©(2") nodes

» Easy to maintain
— Using single and double rotations

The AVL Tree Data Structure

Structural properties
1. Binary tree property
2. Balance property:
balance of every node is
between -1 and 1
Result:

Worst case depth is
©(log n)

Ordering property
— Sameasfor BST

Proving Shallowness Bound

AVL tree of height h
Claim: S(h) =S(h-1) + S(h2) +1

| Solution of recurrence: S(h) = (2"
| (like Fibonacci numbers)

' Let S(h) bethe min # of nodesinan AVL tree of height h=4
with the min # of nodes

Testing the Balance Property

An AVL Tree

data
height

children

10

/@9\ We need to be able to:
@ 1.
2.
@ @
\ 3.
@ ®@
NULLs have
height - 1
Beautiful Balance
Insert(mid)
Insert(small)

Insert(large)

11

Bad Case #1

Insert(large)
Insert(mid)
Insert(small)

12

Fix: Apply Single Rotation

13

General Single Rotation

h+1

» Arethe blue and red heights the only possibilities? Yes!
» Height of thiswhole tree same as it was before insert!
* Height of all ancestorsunchanged. So? 14

Bad Case #2

Insert(small)
Insert(large)
Insert(mid)

15

Fix: Apply Double Rotation

16

General Double Rotation

« Aretheblue and red heights the only possibilities? Yes!
« Height of subtree still the same as it was before insert!

17

Great! Now we can fix imbalance!

 Singlerotation for the “zig-zig” case \\
» Doublerotation for the “zig-zag” case >

Both rotations keep the subtree height unchanged.
Hence only onerotation is sufficient!

18

So what does AVL mean anyway??

Let’ svotel!!

Automatically Virtually Leveled

Architecture for inVisible Leveling (the*in” isinvisible)
All Very Low

Absolut Vodka Logarithms

Amazingly Vexing Letters

19

AVL Tree Operations

Insertion into AVL tree

Find spot for new key
Hang new node there with this key
Search back up the path for imbalance

If thereis an imbalance:
.\'\ case #1: Perform single rotation and exit

Eal I

'\z case #2: Perform double rotation and exit

Should we loop to fix all problems?
21

e Find(x)
* Insert(x) ©(log n)
» Delete(x)
e buildTree } O(n log n)
Easy Insert
3
Insert(3) /@\
®
Q 0 [¢) 1
@ ©
0
Unbalanced?

22

Hard Insert (Bad Case #1)

Insert(33)

Unbalanced?
How to fix?

How did we know? 3

Single Rotation

3

3@9 ‘
s
1 (@oo @5’1%1
AN ALH

0

Hard Insert (Bad Case #2)

Insert(18)

Unbalanced? @ @ @DO

How to fix?

How did we know?
25

Single Rotation (oops!)

26

Double Rotation (Step #1)

27

Double Rotation (Step #2)

3 3

N

2 3)-2
1 0 0 2 1 0 1
@ O @ ©
0 1 0 0
® ®
0 0

@

28

AVL Insert Algorithm Revisited

Recursive Iterative
1. Search downward for 1. Search downward for
spot spot, stacking

parent nodes
2. Insert node
3. Unwind stack,
correcting heights
a. |f inbal ance #1,

2. Insert node

3. On the way back,
correct heights
a. |f inbal ance #1,

single rotate single rotate and
b. If imnbal ance #2, exit
doubl e rotate b. If imnbal ance #2,
doubl e rotate and
exit

Why use a stack?
29

Deletionin AVL Tree

Recall deletionin BST:

* What'sthe order changein the tree?
— Can this affect balance?

* What'sthe structural change?
— Can this affect balance?

30

Single Rotation Code

voi d Rot at eRi ght (Node root) {

Node tenp = root.right

root.right = tenp.left

tenp.left = root

root. hei ght = max(root.right.height(),
root.left.height()) + 1

tenp. hei ght = max(tenp.right. hei ght(),
tenp.left.height()) + 1

root = tenp

31

Double Rotation Code

voi d Doubl eRot at eRi ght (Node root) {
Rot ateLeft (root.right)
Rot at eRi ght (root)

First Rotation

32

Double Rotation Compl eted

Second Rotation

First Rotation

)

ToDo

* Written homework #1

» Read chapter 4

