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CSE 326: Data Structures

Topic #7: AVL Trees

Ashish Sabharwal

Autumn, 2003
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Today’s Outline

• Quiz #2

• Note: Chapter 4 has quite a few corrections!
See errata.

• Balance in Binary Search Trees

• AVL Trees
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Balanced BST

Observation
• BST: the shallower the better!
• For a BST with n nodes

– Average height is Θ(log n)
– Worst case height is Θ(n)

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth isΘ(log n)        – strong enough!

2. is easy to maintain – not too strong!
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Potential Balance Conditions

1. Left and right subtrees of the root
have equal number of nodes

2. Left and right subtrees of the root
have equal height
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Potential Balance Conditions

3. Left and right subtrees of every node
have equal number of nodes

4. Left and right subtrees of every node
have equal height
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The AVL Balance Condition

Left and r ight subtrees of every node
have heights differ ing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property:  –1  ≤≤≤≤ balance(x) ≤≤≤≤ 1,   for  every node x

• Ensures small depth
– Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. Θ(2h)) nodes

• Easy to maintain
– Using single and double rotations
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The AVL Tree Data Structure
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Structural properties

1. Binary tree property

2. Balance property:
balance of every node is
between -1 and 1

Result:

Worst case depth is
Θ(log n)

Ordering property

– Same as for BST 15
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Proving Shallowness Bound
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Let S(h) be the min # of nodes in an
AVL tree of height h

Claim: S(h) = S(h-1) + S(h-2) + 1

Solution of recurrence: S(h) = Θ(2h)
(like Fibonacci numbers)

AVL tree of height h=4
with the min # of nodes
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Testing the Balance Property
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NULLs have 
height -1

We need to be able to:
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An AVL Tree
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Beautiful Balance
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Bad Case #1
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Fix: Apply Single Rotation
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General Single Rotation

• Are the blue and red heights the only possibilities?   Yes!

• Height of this whole tree same as it was before insert!

• Height of all ancestors unchanged. So?

a

X

Y

b

Z

a

XY

b

Zh h - 1

h + 1 h - 1

h + 2

h

h - 1

h

h - 1

h + 1

15

Bad Case #2
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Fix: Apply Double Rotation
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General Double Rotation

• Are the blue and red heights the only possibilities?   Yes!

• Height of subtreestill the same as it was before insert!
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Great! Now we can fix imbalance!

• Single rotation for the “zig-zig”  case

• Double rotation for the “zig-zag”  case

Both rotations keep the subtreeheight unchanged.

Hence only one rotation is sufficient!
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So what does AVL mean anyway??

Let’s vote!!

• Automatically Virtually Leveled

• Architecture for inVisible Leveling (the “ in”  is inVisible)

• All Very Low

• Absolut Vodka Logarithms

• Amazingly Vexing Letters
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AVL Tree Operations

• Find(x)

• Insert(x)

• Delete(x)

• buildTree

Θ(log n)

Θ(n log n)
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Insertion into AVL tree

1. Find spot for new key

2. Hang new node there with this key

3. Search back up the path for imbalance

4. If there is an imbalance:
case #1: Perform single rotation and exit

case #2: Perform double rotation and exit

Should we loop to fix all problems?
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Easy Insert

2092

155

10

3017

Insert(3)

12
0

0

100

1 2

3

0

Unbalanced?

23

Hard Insert (Bad Case #1)
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How did we know?

How to fix?

Unbalanced?
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Single Rotation
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Hard Insert (Bad Case #2)

Insert(18)
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Single Rotation (oops!)
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Double Rotation (Step #1)
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Double Rotation (Step #2)
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AVL Insert Algorithm Revisited

Recursive
1. Search downward for

spot

2. Insert node

3. On the way back,

correct heights

a. If imbalance #1,

single rotate

b. If imbalance #2,

double rotate

Iterative
1. Search downward for

spot, stacking
parent nodes

2. Insert node
3. Unwind stack,

correcting heights
a. If imbalance #1,

single rotate and
exit

b. If imbalance #2,
double rotate and

exit

Why use a stack?
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Deletion in AVL Tree

Recall deletion in BST:

• What’s the order change in the tree?
– Can this affect balance?

• What’s the structural change?
– Can this affect balance?
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Single Rotation Code

void RotateRight(Node root) {

Node temp = root.right

root.right = temp.left

temp.left = root

root.height = max(root.right.height(),

root.left.height()) + 1

temp.height = max(temp.right.height(),

temp.left.height()) + 1  

root = temp

}
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Double Rotation Code
void DoubleRotateRight(Node root) {

RotateLeft(root.right)

RotateRight(root)

}
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Double Rotation Completed
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To Do

• Written homework #1

• Read chapter 4


