CSE 326: Data Structures

Topic #7: AVL Trees

Ashish Sabharwal Autumn, 2003

Today's Outline

• Quiz #2

- Note: Chapter 4 has quite a few corrections! See errata.
- Balance in Binary Search Trees
- AVL Trees

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with *n* nodes
 Average height is Θ(log *n*)
 - Worst case height is $\Theta(n)$
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario

Solution: Require a Balance Condition that

- 1. ensures depth is $\Theta(\log n)$ strong enough!
- 2. is easy to maintain not too strong!

Potential Balance Conditions 1. Left and right subtrees of the root have equal number of nodes

2. Left and right subtrees of the root have equal *height*

Potential Balance Conditions

- 3. Left and right subtrees of *every node* have equal number of nodes
- 4. Left and right subtrees of *every node* have equal *height*

So what does AVL mean anyway??

Let's vote!!

- Automatically Virtually Leveled
- Architecture for inVisible Leveling (the "in" is inVisible)

19

- All Very Low
- Absolut Vodka Logarithms
- Amazingly Vexing Letters

