

Today's Outline

Balanced BST

Observation

- BST: the shallower the better!
- For a BST with n nodes
- Average height is $\Theta(\log n)$
- Worst case height is $\Theta(n)$
- Simple cases such as insert $(1,2,3, \ldots, \mathrm{n})$ lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is $\Theta(\log n) \quad-$ strong enough
2. is easy to maintain - not too strong!

- Quiz \#2
- Note: Chapter 4 has quite a few corrections! See errata.
- Balance in Binary Search Trees
- AVL Trees

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height

Potential Balance Conditions

3. Left and right subtrees of every node

The AVL Balance Condition

Left and right subtrees of every node have heights differing by at most 1

Define: balance $(x)=\operatorname{height}(x$.left $)-\operatorname{height}(x$. right $)$
AVL property: $\mathbf{- 1} \leq \operatorname{balance}(\boldsymbol{x}) \leq 1$, for every node \boldsymbol{x}

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $\Theta\left(2^{h}\right)$) nodes
- Easy to maintain
- Using single and double rotations

Great! Now we can fix imbalance!

- Single rotation for the "zig-zig" case
-
- Double rotation for the "zig-zag" case

Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient!

So what does AVL mean anyway??
Let's vote!!

- Automatically Virtually Leveled
- Architecture for inVisible Leveling (the "in" is inVisible)
- All Very Low
- Absolut Vodka Logarithms
- Amazingly Vexing Letters

AVL Tree Operations

- $\operatorname{Find}(x)$
- $\operatorname{Insert}(x)$
- Delete (x)
- buildTree
$\Theta(n \log n)$

Deletion in AVL Tree

Recall deletion in BST:

- What's the order change in the tree?
- Can this affect balance?
- What's the structural change?
- Can this affect balance?

To Do

- Written homework \#1
- Read chapter 4

