

Today's Outline

- Admin:
- Project 2 due Monday night!
- Midterm: the Monday after, in class

Syllabus: everything covered so far + Hashing

- Quick poll for Homework 2 (to be released on Monday)
(A) Short homework, due next Fri

Will give out sample solutions on Fr
(B) Normal size homework, due the Wed after midterm No sample solutions before midterm

- Finish B-trees
- Start Hashing

Good Hash Function for Integers

Choose

- tableSize to be prime
$-\operatorname{hash}(i)=i$
Example:
- tableSize $=7$
insert(4)
insert(17)
find(12)
insert(9)
delete(17)

10

Hash Table Code: First Pass

```
Value find(Key k)
    int index = hash(k) % tableSize;
    return Table[index];
}
```

Key Questions:

1. What should the hash function be?
2. How should we resolve collisions?
3. What should the table size be?delete(17)

tableSize: Why Prime?

- Suppose
- data stored in hash table: $7160,493,60,55,321,900,810$
- tableSize $=10$
data hashes to $0,3, \underline{0}, 5,1, \underline{0}, \underline{0}$
- tableSize $=11$
data hashes to $10,9,5,0,2, \underline{9}, 7$ $\begin{aligned} & \text { Real-life data tends to } \\ & \text { have a pattern } \\ & \text { Being a multiple of } 11 \text { is } \\ & \text { usually not the pattern } \mathrm{J}\end{aligned}$
- More concrete reasons: next lecture!

tableSize: Why Prime?	
- Suppose - data stored in hash table: 7160, 49	$50,55,321,900,810$
$\begin{aligned} & - \text { tableSize }=10 \\ & \quad \text { data hashes to } 0,3, \underline{0}, 5,1, \underline{0}, \underline{0} \end{aligned}$	Real-life data tends to have a pattern
- tableSize $=11$ data hashes to $10,9,5,0,2, \underline{9}, 7$	Being a multiple of 11 is usually not the pattern J

[^0]
Hash Functions for Strings

Let $s=s_{1} s_{2} s_{3} \ldots s_{k}$. Think ASCII values!
A. $\operatorname{hash}_{\mathrm{A}}(s)=s_{1}+s_{2}+\ldots+s_{k}$
B. $\operatorname{hash}_{\mathrm{B}}(s)=\operatorname{hash}\left(s_{1} s_{2} s_{3}\right)=s_{0}+37 s_{1}+37^{2} s_{2}$
C. $\operatorname{hash}_{\mathrm{C}}(s)=s_{0}+37 s_{1}+\ldots+37^{k} s_{k}$

Every Java object has a hashcode() method.
For strings, hashcode() is similar to hash ${ }_{C}$ above!

[^0]: -More concrete reasons: next lecture!

