
1

CSE 326: Data Structures

Topic #10: Hashing (1)

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline

• Admin:
– Project 2 due Monday night!

– Midterm: the Monday after, in class
Syllabus: everything covered so far + Hashing

– Quick poll for Homework 2 (to be released on Monday)
(A) Short homework, due next Fri

Will give out sample solutions on Fri

(B) Normal size homework, due the Wed after midterm
No sample solutions before midterm

• Finish B-trees

• Start Hashing

3

Reminder: The Search ADT

• Data:
– unique user-specified

keys

– Or: a set of keys

• Operations:
– Insert (key)

– Find (key)
• Checks for membership

– Remove (key)

• Fry

• Simmer

• Puree

• Braise

• Poach

• Sear

• Stirfry

• Roast

insert(Grill)

find(Bake)

NOT FOUND

The Search ADT is sometimes called
the “ Set ADT”

4

Reminder: The Dictionary ADT

• Data:
– valuesmapped to

user-specified keys

– Or: a set of
(key, value) pairs

• Operations:
– Insert (key, value)

– Find (key)

– Remove (key)
The Dictionary ADT is sometimes

called the “ Map ADT”

• ashish@cs

Ashish Sabharwal,
instructor for CSE326,
hoping to graduate soon!

• ethanpg@cs
Ethan Phelps-Goodman,
TA for CSE326,
new grad student

• awong@cs
Albert Jongkit Wong,
TA for CSE326,
5th year undergrad

insert(ashish…)

find(ethanpg)
• ethan

Ethan…, new grad…

An easy extension of the Search ADT!

5

Implementations So Far

• Unsorted list

• Sorted list

• Trees

insert deletefind

How about O(1) insert/find/delete?
6

Hash Table Goal

ethanpg

…

We can do:

a[2] = “ethanpg”

k-1

3

2

1

0

ethanpg
...

…

We want to do:

a[“ethanpg”] = “Ethan...”

“ brad”

“ashish”

“ ethanpg”

“ steve”

“ann”

2

7

Hash Table Approach

h(x)

ashish

ethanpg

steve

ann

brad

What could go wrong?

Hash Function

8

Hash Table Code:
First Pass

Value find(Key k) {
int index = hash(k) % tableSize;
return Table[index];

}

Key Questions:

1. What should the hash function be?

2. How should we resolve collisions?

3. What should the table size be?

9

A Good Hash Function…

…is easy (fast) to compute
(O(1) and practically fast)

…distributes the data evenly � few collisions
(ideally, hash(a) % size ≠ hash(b) % size � no collision)

…uses the whole hash table
(∀ k, 0 ≤ k < size, ∃ i such that hash(i) % size = k)

10

Good Hash Function for Integers

Choose
– tableSize to be prime

– hash(i) = i

Example:
– tableSize = 7

insert(4)

insert(17)

find(12)

insert(9)

delete(17)

3

2

1

0

6

5

4

11

tableSize: Why Prime?

• Suppose
– data stored in hash table: 7160, 493, 60, 55, 321, 900, 810

– tableSize= 10

data hashes to 0, 3, 0, 5, 1, 0, 0

– tableSize= 11

data hashes to 10, 9, 5, 0, 2, 9, 7

• More concrete reasons: next lecture!

Real-life data tends to
have a pattern

Being a multiple of 11 is
usually not the pattern J

12

Hash Functions for Strings

Let s= s1s2s3…sk. Think ASCII values!

A. hashA(s) = s1 + s2 + … + sk

B. hashB(s) = hash(s1s2s3) = s0 + 37 s1 + 372 s2

C. hashC(s) = s0 + 37 s1 + … + 37k sk

Every Java object has a hashcode() method.
For strings, hashcode() is similar to hashC above!

