







- 1. What should the **hash function** be?
- 2. How should we resolve **collisions**?
- 3. What should the **table size** be?









## **Remember Splay Trees?**

- Where in the list would you put a new entry?
- What might you do when you perform find on a key?

## Load Factor in Separate Chaining

 Search cost - unsuccessful search:

- successful search:

· Desired load factor:













- Search cost
  Unsuccessful search
  - Successful search





| Quadratic Probing Example |                        |                        |                      |                        |    |
|---------------------------|------------------------|------------------------|----------------------|------------------------|----|
| insert(76)<br>76%7 = 6    | insert(40)<br>40%7 = 5 | insert(48)<br>48%7 = 6 | insert(5)<br>5%7 = 5 | insert(55)<br>55%7 = 6 |    |
|                           |                        |                        | But.                 | insert(47)<br>47%7 = 5 |    |
| 3                         |                        |                        |                      |                        |    |
| <sup>5</sup>              |                        |                        |                      |                        |    |
|                           |                        |                        |                      |                        | 19 |



## **Quadratic Probing: Properties**

- For any λ < ½, quadratic probing will find an empty slot; for bigger λ, quadratic probing may find a slot
- Quadratic probing does not suffer from *primary* clustering: keys hashing to the same *area* are not bad
- But what about keys that hash to the same *spot*? - *Secondary Clustering*!





- ... is quick to evaluate.
- ...differs from the original hash function keys that h<sub>1</sub> hashes close by must hash far away using h<sub>2</sub> ...never evaluates to 0 (mod size).
- ... never evaluates to o (mod size).
- One good choice is to choose a *prime* R < size and: hash<sub>2</sub>(k) =  $R - (k \mod R)$

What could go wrong if table size S were not prime?









