
1

CSE 326: Data Structures

Topic #10: Hashing (2)

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline

• Admin
– Project 2 due tonight!

– Pick up Homework 2; due Friday

– A word on collaboration and acknowledgement

• Hashing: collision resolution strategies
– Separate chaining

– Open addressing
• Linear probing, quadratic probing, double hashing

– Rehashing

3

Review: Hash Table Approach

h(x)

ashish

ethanpg

steve

ann

brad

What could go wrong?

keys

1. Collision
2. Array fills up

Hash Function

Keys à integers 0

1

2

4

Review: Hash Table Code

value find(Key k) {
int index = hash(k) % tableSize;
return Table[index];

}

Key Questions:

1. What should the hash function be?

2. How should we resolve collisions?

3. What should the table size be?

5

Review: A Good Hash Function…

…is easy (fast) to compute
(O(1) and practically fast)

…distributes the data evenly � few collisions
(ideally, hash(a) % size ≠ hash(b) % size � no collision)

…uses the whole hash table
(∀ k, 0 ≤ k < size, ∃ i such that hash(i) % size = k)

6

Collisions
• Pigeonhole principle says we can’ t avoid all collisions

– try to hash without collision m keys into n slots with m> n

– e.g., try to put 7 pigeons into 5 holes

• What do we do when two keys hash to the same entry?
1. Separate chaining: put little dictionaries in each entry

2. Open addressing: pick a next entry to try

shove extra pigeons in one hole!

2

7

Load Factor

How often do collisions occur?

• Depends on the load factor, λλλλ

λλλλ = ______________________

tableSize

of entries in table

High λ � more collisions, bad performance

Low λ � less collisions, good performance

8

3

2

1

0

6

5

4

a d

e b

c

1. Separate Chaining

• Put a mini-Dictionary at
each entry
– Usually a linked list

– Why not a search tree?

• Properties
– Average list size =

– Works even when λ > 1

– performance degrades
with length of chains

h(a) = h(d)
h(e) = h(b)

9

Remember Splay Trees?

• Where in the list would you put a new entry?

• What might you do when you perform find on a key?

10

• Search cost
– unsuccessful search:

– successful search:

• Desired load factor:

Load Factor in Separate Chaining

11

2. Open Addressing

What if we only allow one Key at
each entry?
– two objects that hash to the same spot

can’ t both go there
– first one there gets the spot
– next one must probe for another spot

• Properties
– Requires λ ≤ 1
– performance degrades with difficulty of

finding right spot

a

c

e
3

2

1

0

6

5

4

h(a) = h(d)
h(e) = h(b)

d

b

12

Salary-Boosting Obfuscation

“Open Hashing”

equals

“Separate Chaining”

“Closed Hashing”

equals

“Open Addressing”

3

13

Probing Function, f(x)

• The Probing process
– First probe - given a key k, hash to h(k)
– Second probe - if h(k) is occupied, try h(k) + f(1)
– Third probe - if h(k) + f(1) is occupied, try h(k) + f(2)
– And so on.

• Probing properties
– force f(0) = 0
– the i th probe is to (h(k) + f(i)) mod size

• When does the probe fail?

• Does that mean the table is full?

14

2a. Linear Probing

• Probe sequence is
– h(k) mod size

– (h(k) + 1) mod size

– (h(k) + 2) mod size

– …

f(i) = i

15

Linear Probing Example

insert(55)
55%7 = 6

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(93)
93%7 = 2

insert(40)
40%7 = 5

insert(47)
47%7 = 5

insert(10)
10%7 = 3

Problem?

16

Load Factor in Linear Probing

• Search cost
– Unsuccessful search

– Successful search

17

Load Factor in Linear Probing

• For any λ < 1, linear probing will f ind an empty slot

• Search cost (for large table sizes)
– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2

() ��
�

�
��
�

�

−
+ 21

1
1

2
1

λ

()���
�

��
�

�

−
+

λ1

1
1

2

1

18

2b. Quadratic Probing

• Probe sequence is
– h(k) mod size

– (h(k) + 1) mod size

– (h(k) + 4) mod size

– (h(k) + 9) mod size

– …

• Implementation trick: f(i+1) =
– No multiplication!

f(i) = i2

4

19

Quadratic Probing Example

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5

But…

20

Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will
f ind an empty slot in size/2 probes or fewer.
– show for all 0 ≤≤≤≤ i,j ≤≤≤≤ size/2 and i ≠≠≠≠ j

(h(x) + i2) mod size ≠≠≠≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠≠≠≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size

���� i2 mod size = j2 mod size

���� (i2 - j2) mod size = 0
���� [(i + j)(i - j)] mod size = 0

– but how can i + j = 0 or i + j = size when
i ≠≠≠≠ j and i,j ≤≤≤≤ size/2?

– same for i - j mod size = 0

21

Quadratic Probing: Properties

• For any λ < ½, quadratic probing will f ind an empty
slot; for bigger λ, quadratic probing may f ind a slot

• Quadratic probing does not suffer from primary
clustering: keys hashing to the same area are not bad

• But what about keys that hash to the samespot?
– Secondary Clustering!

22

• Probe sequence is
– h1(k) mod size

– (h1(k) + 1 ⋅ h2(k)) mod size

– (h1(k) + 2 ⋅ h2(k)) mod size

– …

• Goal?

2c. Double Hashing2c. Double Hashing

f(i) = i ⋅ hash2(k)

2c. Double Hashing2c. Double Hashing

hmm…. what was k?

23

A Good Double Hash Function…

…is quick to evaluate.

…differs from the original hash function – keys that h1

hashes close by must hash far away using h2

…never evaluates to 0 (mod size).

One good choice is to choose a primeR < size and:

hash2(k) = R - (k mod R)

What could go wrong if table size S were not prime?

24

Double HashingDouble Hashing Example (R=5)

probes:

93

55

40

103

2

1

0

6

5

4

insert(55)
55%7 = 6

5 - (55%5) = 5

2

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

1

76

3

2

1

0

6

5

4

insert(93)
93%7 = 2

1

93

76

3

2

1

0

6

5

4

insert(40)
40%7 = 5

1

93

40

76

3

2

1

0

6

5

4

insert(47)
47%7 = 5

5 - (47%5) = 3

2

47

93

40

76

103

2

1

0

6

5

4

insert(10)
10%7 = 3

1

47

76

93

40

47

5

25

Load Factor in Double Hashing

• For any λ < 1, double hashing will f ind an empty
slot (given appropriate table size and hash2)

• Search cost appears to approach optimal
(random hash):
– successful search:

– unsuccessful search:

• No primary clustering and no secondary clustering

• Cost?

λ−1

1

λλ −1

1
ln

1

26

delete(2) find(7)

Deletion with Open Addressing

Solution?

(problem 4 on homework 2)

0

1

2
3

2

1

0

6

5

4

insert(7)

27

The Squished Pigeon Principle J

• An insert using open addressing cannot
work with a load factor of 1 or more.

• An insert using open addressing with
quadratic probing may not work with a
load factor of ½ or more.

• Whether you use separate chaining or
open addressing, large load factors lead to
poor performance!

How can we relieve the
pressure on the pigeons?

28

Rehashing

• When the load factor gets “ too large” (over a constant
threshold on λ), rehash all the elements into a new,
larger table:
– spreads keys back out, may drastically improve performance

– avoids failure for open addressing techniques

– allows arbitrarily large tables starting from a small table

– clears out lazily deleted items

• Cost?

• Can we just copy over into a bigger array?

29

Rehashing Example

20

96

82

89

3

2

1

0

4

3

2

1

0

4

8

7

6

5

9

