CSE 326: Data Structures

Topic #11: Digoint Set ADT (1)

Ashish Sabharwal
Autumn, 2003

Today’s Outline

e Admin
— Project 3 will be out Thursday
Introduction in tomorrow’ s section
— Midterm statistics
Sample solutions

— B-Treeclarification

« Digoint Set ADT
— Union-Find implementation

Get ready for Project 3!

« Find a partner and send me an email!
— someone you haven't worked with yet

 Save your work from project 2
— your team |ID may change
— may not be able to access old shared directory

Midterm Statistics

Total points 70
Max 70
Min 31
Average 57.8
Median 57

Good job!

Histogram of Midterm Scores

Histogram

n = I

<45 46-50 51-55 56-60 61-65 66-70

14
12
10

Frequency

[SINIFNEY-Y

Score range

Class size = 46

B-Tree Clarification

Homework 2, problem 1, partsc and d

« Sample solutions split internal node differently
than what we did in class

* M is# pointers, not # keys

Our Last Data Structure!

* Implementation of the Digoint Set ADT
 Uses Union-Find Algorithm

Hmm... so what will we do next?
« Sorting algorithms, Graph based a gorithms, ...

» Use data structures learned to make these
efficient!

Motivation: What's a Good Maze?

Maze Construction Algorithm

e Given:
A collection of rooms V
Walls/doors between the rooms (initialy no doors) E

* Wewant to build a collection of wallsto knock down, E' O
E, such that one unique path connects every two rooms

Wi le edges remain in E {
(X, y) = RenoveRandonmwal | ()
if(x and y are not X
connected so far) {
Add (x, y) to E
Mark x and y as connected

connect ed = have adirect or indirect path 9

The Problem, Formally

s *If x andy have not yet been
i connected”
— Aretwo elementsin the
same set?

e “Mark x and y as connected”
— Form the union of two sets

o

10

Digoint Set ADT

Data: elements (no priority, not
necessarily comparable)

Operations
1. Find(x)
— Returns set identifier
— Find(x) = Find(y) iff xand y arein the -
same set Fa
2. Union(A, B) B/
— Arguments are set identifiers
3. MakeNewSet(item)
— Create anew set containing only item

Digoint Set: Properties

« Equivalence property

— Every element of aDS

belongsto exactly oneset ~ find(4) —» (1,48 . {6}
g \
o
« Dynamic equivalence 59,10} /

union(3,6) — {2.3}
property

— The set of an element can
change after execution of

aunion Note: Underlined elements

areset IDs

12

Modified Maze Construction Algorithm

Wil e edges remain in E

(A, B) = RenpbveRandomVal | () A
if(Find(A) != Find(B))

E=F U(A B)

Uni on(Find(A), Find(B)) B

Maze Construction Example

T @ ged

dle|f
o B
Construct this maze! Ej:' 'IE
o]

Initially (the identifier of each .
set is underlined): @ {n} m

{8HBHAHAHEHHGHHD e of cigesinbie

14

Example, continued
{aH{bH{cHdHeHHaHhHi}

find(b) = b ol

find(e) = e

find(b) # find(e) so: Eﬂ (e |- [1] .

add1toE

union(b, €) E
Result: E ‘ |I|

Order of edgesin blue

Implementing the DSADT

cantherebe |
more unions? |

* nelements, mfinds, < n-1 unions

» Target complexity: ®(m+n)
i.e. ©(1) amortized

* O©(1) worst-case for find as well as union would
be great, but...
Known result: both find and union cannot be
donein worst-case ®(1) time

16

Attempt #1

» Hash elements to a hashtable
» Store set identifier for each element as data

runtime for find:
runtime for union:

runtime for mfinds, n-1 unions:

Attempt #2

» Hash elements to a hashtable
» Store set identifier for each element as data
* Link al elements in the same set together

runtime for find:
runtime for union:

runtime for mfinds, n-1 unions:

18

Attempt #3

« Hash elements to a hashtable

« Store set identifier for each element as data
« Link all elementsin the same set together
 Always update identifiers of smaller set

runtime for find:
runtime for union:

runtime for mfinds, n-1 unions:

[Read section 8.2] 19

DS ADT Tree Representation

A A
@ — * Maintain aforest
} of up-trees
B I e Eachsetisatree

e + What'sanatural
/[\ set identifier?

20

Find Implementation

Union Implementation

A B ‘[
+
) /’\ Union(4, B)

— Join the two trees

— Since A and B are aready
the roots of atree, thisis

A 1 ‘ |
by n

B Find(x)
I — Traverse parents of x to
/T\ the root
Runtime:
3
More of the Example [d
[d}{a]{e}7] 1]
o] [
union(b,e) [d] [i]

ofoRcRcYcXoXcXoRe

(extra space)

24

The Final Maze

[al—1b] [c]
[d [e}—11]
ol [B—{i

Ooh... scary!
Such a hard maze!

Nifty storage trick
» A forest of up-trees
can easily be stored éé
inan array e
» Use hashtable to map

) @
node names to array

indices G l

8 (i)

0(a) 1(b) 2(c) 3(d) 4(e) 5(f) 6(q) 7 (h
pindec| 10| 4] 0] 12 || 1

26

I mplementation

int Find(Qbject x) {
int xID = hTabl e[x];

void Union(int x, int y) {
uplyl = x;

}

while(up[xID !=-1) {
xID = up[xID;

} runtime for Union():

return xID;

} runtime for Find():

runtime for m Finds and n-1 Unions:

Now this doesn’t look good L

Can we do better? Yes!

1. Improve union so that find only takes ®(log n)

¢ Union-by-size
¢ Reduces complexity to ®(mlog n + n)

2. Improve find so that it becomes even better!
e Path compression
¢ Reduces complexity to aimost ®(m + n)

28

To Do

* Find partner for Project 3
— Send me email

» Read Chapter 8

