
1

CSE 326: Data Structures

Topic #11: Disjoint Set ADT (1)

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline

• Admin
– Project 3 will be out Thursday

Introduction in tomorrow’s section

– Midterm statistics
Sample solutions

– B-Tree clarification

• Disjoint Set ADT
– Union-Find implementation

3

Get ready for Project 3!

• Find a partner and send me an email!
– someone you haven’ t worked with yet

• Save your work from project 2
– your team ID may change

– may not be able to access old shared directory

4

Midterm Statistics

Total points 70
Max 70
Min 31
Average 57.8
Median 57

Good job!

5

Histogram of Midterm Scores

Class size = 46

Histogram

0

2

4

6

8

10

12

14

< 45 46-50 51-55 56-60 61-65 66-70

Score range

F
re

qu
en

cy

6

B-Tree Clarification

Homework 2, problem 1, parts c and d

• Sample solutions split internal node differently
than what we did in class

• M is # pointers, not # keys

2

7

Our Last Data Structure!

• Implementation of the Disjoint Set ADT

• Uses Union-Find Algorithm

Hmm… so what will we do next?

• Sorting algorithms, Graph based algorithms, …

• Use data structures learned to make these
efficient!

8

Motivation: What’s a Good Maze?

9

Maze Construction Algorithm

While edges remain in E {
(x, y) = RemoveRandomWall()
if(x and y are not

connected so far) {
Add (x, y) to E’
Mark x and y as connected

}
}

• Given:
• A collection of rooms V

• Walls/doors between the rooms (initially no doors) E

• We want to build a collection of walls to knock down, E’ ⊆⊆⊆⊆
E, such that one unique path connects every two rooms

x

y

connected ≡ have a direct or indirect path 10

The Problem, Formally

• “ If x and y have not yet been
connected”
– Are two elements in the

same set?

• “Mark x and y as connected”

– Form the union of two sets

x

x

y

y

11

Disjoint Set ADT
Data: elements (no priority, not

necessarily comparable)

Operations
1. Find(x)

– Returns set identifier
– Find(x) = Find(y) iff x and y are in the

same set

2. Union(A, B)
– Arguments are set identifiers

3. MakeNewSet(item)
– Create a new set containing only item

A

B

12

Disjoint Set: Properties

• Equivalence property
– Every element of a DS

belongs to exactly one set

• Dynamic equivalence
property
– The set of an element can

change after execution of
a union

{ 1,4,8}

{ 7}

{ 6}

{ 5,9,10}
{ 2,3}

find(4)

8

union(3,6)

{ 2,3,6}

Note: Underlined elements
are set IDs

3

13

Modified Maze Construction Algorithm

While edges remain in E

(A, B) = RemoveRandomWall()

if(Find(A) != Find(B))

E′′′′ = E′′′′ � (A, B)

Union(Find(A), Find(B))

A

B

14

Maze Construction Example

Construct this maze!

Initially (the identifier of each
set is underlined):

{ a} { b} { c} { d} { e} { f} { g} { h} { i}
Order of edges in blue

3

2

4

11

10

1

7

9

6

8

12 5

a b c

d e f

hg i

g

d

a

h

e

b

i

f

c

15

Example, continued

{ a} { b} { c} { d} { e} { f} { g} { h} { i}

find(b) � b
find(e) � e
find(b) ≠ find(e) so:

add 1 to E′′′′
union(b, e)

Result:

3

2

4

11

10

7

9

6

8

12 5

a b c

d e f

hg i

Order of edges in blue

16

Implementing the DS ADT

• n elements, m finds, ≤ n-1 unions

• Target complexity:
�

(m+n)
i.e.

�
(1) amortized

•
�

(1) worst-case for find as well as union would
be great, but…

Known result: both find and union cannot be
done in worst-case

�
(1) time

can there be
more unions?

17

Attempt #1

• Hash elements to a hashtable

• Store set identifier for each element as data

runtime for find:

runtime for union:

runtime for m finds, n-1 unions:

18

Attempt #2

• Hash elements to a hashtable

• Store set identifier for each element as data

• Link all elements in the same set together

runtime for find:

runtime for union:

runtime for m finds, n-1 unions:

4

19

Attempt #3

• Hash elements to a hashtable
• Store set identifier for each element as data
• Link all elements in the same set together
• Always update identifiers of smaller set

runtime for find:

runtime for union:

runtime for m finds, n-1 unions:

[Read section 8.2] 20

DS ADT Tree Representation

• Maintain a forest
of up-trees

• Each set is a tree

• What’s a natural
set identifier?

B B

A A

21

Find Implementation

�����x�
– Traverse parents of x to

the root

Runtime:

B

22

Union Implementation

������	
���
– Join the two trees

– Since A and B are already
the roots of a tree, this is
easy!

Runtime:

BA

A

+

23

More of the Example

union(b,e)

e f g ha b c d i

3

2

4

11

10

1

7

9

6

8

12 5

a b c

d e f

hg i

24

(extra space)

5

25

The Final Maze

Ooh… scary!
Such a hard maze!

a b c

d e f

hg i

26

f

g ha

b

c

id

e

0 -1 0 1 2 -1 -1 7-1

0 (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i)

Nifty storage trick

• A forest of up-trees
can easily be stored
in an array

• Use hashtable to map
node names to array
indices

up-index:

27

Implementation

i nt Fi nd(Obj ect x) {

i nt xI D = hTabl e[x] ;

whi l e(up[x I D] ! = - 1) {

x I D = up[x I D] ;

}

r et ur n xI D;

}

voi d Uni on(i nt x, i nt y) {

up[y] = x ;

}

runtime for Union():

runtime for Find():

runtime for m Finds and n-1 Unions:
28

Now this doesn’ t look good L

Can we do better? Yes!

1. Improve union so that find only takes
�

(log n)
• Union-by-size
• Reduces complexity to � (m log n + n)

2. Improve find so that it becomes even better!
• Path compression
• Reduces complexity to almost � (m + n)

29

To Do

• Find partner for Project 3
– Send me email

• Read Chapter 8

