

- Complexity of Find: $\Theta(\max \text{ node depth})$
- All nodes start at depth 0
- Node depth increases
 - Only when it is part of smaller tree in a union
 - Only by one level at a time
 Result: tree size doubles when node depth increases by 1

Find runtime = Θ (node depth) =

runtime for m finds and n-1 unions =

Nifty Storage Trick

- Use the same array representation as before
- Instead of storing -1 for the root, simply store -size

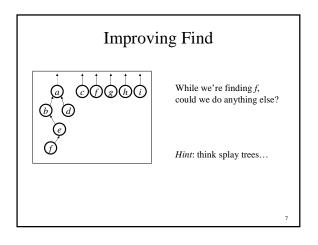
[Read section 8.4, page 276]

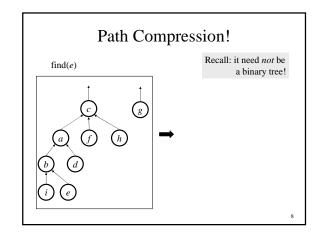
How about Union-by-<u>height</u>?

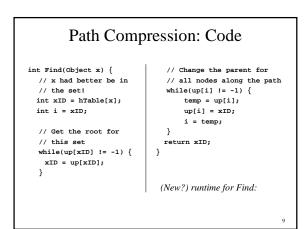
• Can still guarantee $\Theta(\log n)$ worst case depth

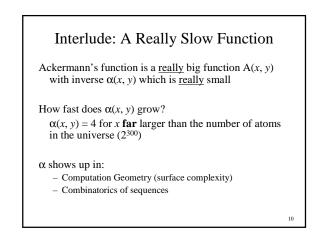
Left as an exercise! (will probably appear in Homework #3)

• Problem: Union-by-height doesn't combine very well with the new find optimization technique we'll see next









A More Comprehensible Slow Function

log* x = number of times you need to compute log to bring value down to at most 1

E.g. $\log^* 2 = 1$ $\log^* 4 = \log^* 2^2 = 2$ $\log^* 16 = \log^* 2^{2^2} = 3$ (log log log 16 = 1) $\log^* 65536 = \log^* 2^{2^2} = 4$ (log log log log 65536 = 1) $\log^* 2^{65536} = \dots = 5$

Take this: $\alpha(m,n)$ grows even slower than $\log^* n$!!

11

