
1

CSE 326: Data Structures

Topic #11: Disjoint Set ADT (2)

Ashish Sabharwal

Autumn, 2003

2

Improving Union

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e

Could we do a better
job on this union?

3

Union-by-size: Code

i nt Uni on(i nt x , i nt y) {

/ / I f up[x] and up[y] ar en’ t bot h

/ / - 1, t hi s al gor i t hm i s i n t r oubl e

i f (si ze[x] > s i ze[y]) {

up[y] = x;

s i ze[x] += si ze[y] ;

}

el se {

up[x] = y;

s i ze[y] += si ze[x] ;

}

}

new runtime for Union():

new runtime for Find():

4

Union-by-size: Find Analysis

• Complexity of Find:
�

(max node depth)

• All nodes start at depth 0
• Node depth increases

– Only when it is part of smaller tree in a union
– Only by one level at a time
Result: tree size doubles when node depth increases by 1

Find runtime =
�

(node depth) =

runtime for m finds and n-1 unions =

5

Nifty Storage Trick

• Use the same array representation as before

• Instead of storing –1 for the root,
simply store –si ze

[Read section 8.4, page 276]

6

How about Union-by-height?

• Can still guarantee � (log n) worst case depth

Left as an exercise!
(will probably appear in Homework #3)

• Problem: Union-by-height doesn’ t combine very well
with the new find optimization technique we’ ll see next

2

7

Improving Find

f g ha

b

c i

d

e

While we’ re finding f,
could we do anything else?

f
Hint: think splay trees…

8

Path Compression!

find(e)

f ha

b

c

d

e

g

i

Recall: it need not be
a binary tree!

9

Path Compression: Code

i nt Fi nd(Obj ect x) {

/ / x had bet t er be i n

/ / t he set !

i nt x I D = hTabl e[x] ;

i nt i = x I D;

/ / Get t he r oot f or

/ / t hi s set

whi l e(up[xI D] ! = - 1) {

xI D = up[x I D] ;

}

/ / Change t he par ent f or

/ / al l nodes al ong t he pat h

whi l e(up[i] ! = - 1) {

t emp = up[i] ;

up[i] = x I D;

i = t emp;

}

r et ur n xI D;

}

(New?) runtime for Find:

10

Interlude: A Really Slow Function

Ackermann’s function is a really big function A(x, y)
with inverse α(x, y) which is really small

How fast does α(x, y) grow?
α(x, y) = 4 for x far larger than the number of atoms
in the universe (2300)

α shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences

11

A More Comprehensible
Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g. log* 2 = 1
log* 4 = log* 22 = 2
log* 16 = log* 222 = 3 (log log log 16 = 1)

log* 65536 = log* 2222 = 4 (log log log log 65536 = 1)

log* 265536 = …………… = 5

Take this: α(m,n) grows even slower than log* n !!
12

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and
find operations on a set of n elements have worst case
complexity of O(p ⋅ α(p, n))

For all practical purposes this is amortized constant time:
O(p ⋅ 4) for p operations!

• Very complex analysis – worse than splay tree analysis
etc. that we skipped!

• Tarjan is also the (very smart) splay tree guy

