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Improving Union

f

g ha

b

c

id

e

f

g h

a

b

c

i

d

e

Could we do a better 
job on this union?
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Union-by-size: Code

i nt Uni on( i nt x ,  i nt y)  {

/ /  I f  up[ x]  and up[ y ]  ar en’ t  bot h

/ /  - 1,  t hi s  al gor i t hm i s  i n t r oubl e

i f  ( si ze[ x ]  > s i ze[ y] )  {

up[ y ]  = x;

s i ze[ x]  += si ze[ y ] ;

}

el se {

up[ x ]  = y;

s i ze[ y]  += si ze[ x ] ;

}

}

new runtime for Union():

new runtime for Find():
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Union-by-size: Find Analysis

• Complexity of Find: 
�

(max node depth)

• All nodes start at depth 0
• Node depth increases 

– Only when it is part of smaller tree in a union
– Only by one level at a time
Result: tree size doubles when node depth increases by 1

Find runtime = 
�

(node depth) = 

runtime for m finds and n-1 unions = 
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Nifty Storage Trick

• Use the same array representation as before

• Instead of storing –1 for the root,
simply store –si ze

[Read section 8.4, page 276]
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How about Union-by-height?

• Can still guarantee � (log n) worst case depth

Left as an exercise!
(will probably appear in Homework #3)

• Problem: Union-by-height doesn’ t combine very well 
with the new find optimization technique we’ ll see next
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Improving Find 
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While we’ re finding f, 
could we do anything else?

f
Hint: think splay trees…
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Path Compression!

find(e)
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Recall: it need not be
a binary tree!
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Path Compression: Code

i nt Fi nd( Obj ect  x)  {

/ /  x  had bet t er  be i n 

/ /  t he set !

i nt x I D = hTabl e[ x] ;

i nt i  = x I D;

/ /  Get  t he r oot  f or  

/ /  t hi s  set

whi l e( up[ xI D]  ! = - 1)  {

xI D = up[ x I D] ;

}

/ /  Change t he par ent  f or

/ /  al l  nodes al ong t he pat h  

whi l e( up[ i ]  ! = - 1)  {

t emp = up[ i ] ;

up[ i ]  = x I D;

i  = t emp;

}

r et ur n xI D;

}

(New?) runtime for Find:
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Interlude: A Really Slow Function

Ackermann’s function is a really big function A(x, y) 
with inverse α(x, y) which is really small

How fast does α(x, y) grow?   
α(x, y) = 4 for x far larger than the number of atoms 
in the universe (2300)

α shows up in:
– Computation Geometry (surface complexity)
– Combinatorics of sequences
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A More Comprehensible
Slow Function

log* x = number of times you need to compute
log to bring value down to at most 1

E.g. log* 2 = 1
log* 4 = log* 22 = 2
log* 16 = log* 222 = 3           (log log log 16 = 1)

log* 65536 = log* 2222 = 4    (log log log log 65536 = 1)

log* 265536 = …………… = 5

Take this: α(m,n) grows even slower than log* n   !!
12

Complex Complexity of 
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and 
find operations on a set of n elements have worst case 
complexity of O(p ⋅ α(p, n))

For all practical purposes this is amortized constant time:
O(p ⋅ 4) for p operations!

• Very complex analysis – worse than splay tree analysis 
etc. that we skipped!

• Tarjan is also the (very smart) splay tree guy


