
1

CSE 326: Data Structures

Topic #17:
Let’s get connected… minimally!

Ashish Sabharwal

Autumn, 2003

2

Today’s Outline

• Discuss Quiz #5

• Finish Shortest Path Problems

• Minimum Spanning Trees

3

Before we move on…

• Dijkstra’s algorithm, as we saw, gives the 
minimum distance between s and t.

• Can we modify it to output the shortest path
between s and t?

A

costknownnode

4

An Application:
Moving Around Washington

What’s the fastest way from Seattle to Pullman?

Answer:

5

A Different Application:
Communication in Washington 

What’s the cheapest inter-city network?

6

Is This Problem Really Different?

• Is knowing Dijkstra’s algorithm enough to 
solve the latter application?

Yes? Then how?

No? Then why?



2

7

Spanning tree: a subgraph of a connected,
undirected graph that

1. touches all vertices in the graph (spans the graph)
2. forms a tree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the
least total edge cost.

Spanning Tree, MST

4 7

1 5

9

2

8

Two Different Approaches

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!

9

Prim’sAlgorithm for MST

A node-based greedy algorithm
Builds MST by greedily adding nodes

1. Select a node to be the “ root”
• mark it as known
• Update cost of all its neighbors

2. While there are unknown nodes left in the graph
a. Select an unknown node b with the smallest cost from 

some known node a
b. Mark b as known
c. Add (a, b) to MST
d. Update cost of all nodes adjacent to b

10

Prim’sAlgorithm: Example

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7
C

D

E

F

G

H

B

A

costknownnode

11

Prim’sAlgorithm: Complexity

• Depends on what?

• How long does each step take?

Runtime:

12

Prim’sAlgorithm: Correctness

• A proof very similar to that of Dijkstra’s
algorithm works!

(left as exercise)



3

13

Kruskal’s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with

• empty MST

• all vertices marked unconnected

• all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge(u,v) and mark it

b. If u and v are not already connected, add (u,v) to the 
MST and mark u and v as connected to each other

Doesn’ t it sound familiar? 14

Kruskal’s Algorithm: Example

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

15

Kruskal’sAlgorithm: Complexity

• Depends, of course, on the data structures/ADT used.
What should we use?

• How long does each step take?

16

Kruskal’sAlgorithm: Correctness
It clearly generates a spanning tree. Call it TK.

Suppose TK is not minimum:

Pick another spanning tree Tmin with lower cost than TK

Pick the smallest edge e1=(u,v) in TK that is not in Tmin

Tmin already has a path p in Tmin from u to v
� Adding e1 to Tmin will create a cycle in Tmin

Pick an edge e2 in p that Kruskal’s algorithm considered after
adding e1 (must exist: u and v unconnected when e1 considered)
� cost(e2) ≥ cost(e1)
� can replace e2 with e1 in Tmin without increasing cost!

Keep doing this until Tmin is identical to TK

� TK must also be minimal – contradiction!

17

Play at Home with Prim
A

C

B

D

F
H

G

E

1

7
6

5

11

4

12

13

2
3

9

10

4

1. Starting at node A, find the MST using Prim’smethod.
(continue on next slide)

18

Play at Home with Kruskal
A

C

B

D

F
H

G

E

1

7
6

5

11

4

12

13

2
3

9

10

4

2. Now find the MST using Kruskal’smethod.
3. Under what conditions will these methods give the same result?
4. What data structures should be used for Kruskal’s? Running time?



4

19

To Do

• Read sections 9.1 – 9.3, 9.5


