CSE 326: Data Structures
Topic \#17:
Let's get connected... minimally!
Ashish Sabharwal
Autumn, 2003

Today's Outline

- Discuss Quiz \#5
- Finish Shortest Path Problems
- Minimum Spanning Trees

Before we move on...

- Dijkstra's algorithm, as we saw, gives the minimum distance between s and t.
- Can we modify it to output the shortest path between s and t ?

An Application:
Moving Around Washington

What's the fastest way from Seattle to Pullman?
Answer:

A Different Application:
Communication in Washington

What's the cheapest inter-city network?

Is This Problem Really Different?

- Is knowing Dijkstra's algorithm enough to solve the latter application?

Yes? Then how?
No? Then why?

Prim's Algorithm for MST

A node-based greedy algorithm

 Builds MST by greedily adding nodes1. Select a node to be the "root"

- mark it as known
- Update cost of all its neighbors

2. While there are unknown nodes left in the graph
a. Select an unknown node b with the smallest cost from some known node a
b. Mark b as known
c. Add (a, b) to MST
d. Update cost of all nodes adjacent to b

Prim's Algorithm: Complexity

- Depends on what?
- How long does each step take?

Runtime:

Prim's Algorithm: Example

Prim's Algorithm: Correctness

- A proof very similar to that of Dijkstra's algorithm works!
(left as exercise)

Kruskal's Algorithm for MST

An edge-based greedy algorithm Builds MST by greedily adding edges

1. Initialize with

- empty MST
- all vertices marked unconnected
- all edges unmarked

2. While there are still unmarked edges
a. Pick the lowest cost edge (u, v) and mark it
b. If \mathbf{u} and \mathbf{v} are not already connected, add (\mathbf{u}, \mathbf{v}) to the MST and mark \mathbf{u} and \mathbf{v} as connected to each other

Kruskal's Algorithm: Complexity

- Depends, of course, on the data structures/ADT used. What should we use?
- How long does each step take?

Kruskal's Algorithm: Correctness

It clearly generates a spanning tree. Call it T_{K}.
Suppose T_{K} is not minimum:
Pick another spanning tree $\mathrm{T}_{\text {min }}$ with lower cost than T_{K} Pick the smallest edge $e_{1}=(u, v)$ in T_{K} that is not in $\mathrm{T}_{\text {min }}$ $\mathrm{T}_{\text {min }}$ already has a path p in $\mathrm{T}_{\text {min }}$ from u to v \Rightarrow Adding e_{1} to $\mathrm{T}_{\text {min }}$ will create a cycle in $\mathrm{T}_{\text {min }}$
Pick an edge e_{2} in p that Kruskal's algorithm considered after adding e_{1} (must exist: u and v unconnected when e_{1} considered) $\Rightarrow \operatorname{cost}\left(e_{2}\right) \geq \operatorname{cost}\left(e_{1}\right)$
\Rightarrow can replace e_{2} with e_{1} in $\mathrm{T}_{\text {min }}$ without increasing cost!
Keep doing this until $\mathrm{T}_{\text {min }}$ is identical to T_{K}
$\Rightarrow \mathrm{T}_{\mathrm{K}}$ must also be minimal - contradiction!

Kruskal's Algorithm: Example

1. Starting at node A, find the MST using Prim's method. (continue on next slide)

Play at Home with Kruskal

2. Now find the MST using Kruskal's method.
3. Under what conditions will these methods give the same result?
4. What data structures should be used for Kruskal's? Running time?

