
1

CSE 326: Data Structures
Topic 14: O Vertex, Where Art

Thou?

Luke McDowell
Summer Quarter 2003

Finding the Shortest Path

• Use Breadth-First-Search
• Runtime?

A Slight Searching Wrinkle:
Weighted Graphs

20

30

35

60

Mukilteo

Edmonds

Seattle

Bremerton

Bainbridge

Kingston

Clinton

Each edge has an associated weight or cost.

Diffentiating Between Path Length
and Path Cost

Path length: the number of edges in the path
Path cost: the sum of the costs of each edge

Chicago3.5

length(p) = cost(p) =

Seattle

San Francisco
Dallas

Salt Lake City

2 2

2.5

3

2
2.5

2.5

The path p

The Quest For Food

Vending Machine in EE1

Sieg 232 HUB

Delfino’s

Zao’s
Araya’sNeelam’s

Coke Closet

Home

Schultzy’s

Parent’s Home

Café Allegro

10The Ave

U Village

350

375

40

25

35

45

25

15,356

35

285
75 70 365

350

Can we calculate shortest distance to all nodes from Sieg 232?

Formally speaking …
Given a graph G = (V, E) and a vertex s ? V,

find the shortest path from s to every vertex in V

Many variations:
– Weighted vs. unweighted
– Cyclic vs. acyclic
– Positive weights only vs. negative weights allowed
– Directed vs undirected graph

Applications?

2

Dijkstra, Edsger Wybe

Legendary figure in computer science;
was a professor at University of Texas.

Supported teaching introductory
computer courses without computers
(pencil and paper programming)

Supposedly wouldn’t (until very late in
life) read his e-mail; so, his staff had to
print out messages and put them in his
box.

E.W. Dijkstra (1930-2002)

Dijkstra’s Idea

Adapt BFS to handle
weighted graphs

Two kinds of vertices:
– Finished vertices

• Shortest distance is
computed

– Unknown vertices
• Have tentative distance

Dijkstra’s Idea

At each step:
1) Pick closest unknown

vertex
2) Add it to finished

vertices
3) Update distances

Dijkstra Pseudocode

Initialize the cost of each node to ?

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select the unknown node with the lowest cost: n
Mark n as known
For each node a which is adjacent to n

a’s cost = min(a’s old cost, n’s cost + cost of (n, a))

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2 1

1

4
10

8

11

94

2

7
vertex known cost
A
B
C
D
E
F
G
H

Time to play at home…

A

C

B

D

F H

G

E

2 2 3

2 1

4

4

10

8

11

1

9

4 2

3

1. Use Dijkstra’s algorithm to find the shortest path from H to every
node in the graph below

2. Under what conditions will Dijkstra’s algorithm fail?

3. What data structures should you use to best implement this
algorithm? What running time does that yield?

I

10

5

3

Dijkstra Implementation?
Initialize the cost of each node to ?
Initialize the cost of the source to 0
While there are unknown nodes left in the graph

Select the unknown node with the lowest cost: n
Mark n as known
For each node a which is adjacent to n

a’s cost = min(a’s old cost, n’s cost + cost of (n, a))

What data structures?

Running time?

Dijkstra’s Algorithm
for Single Source, Shortest Path

• Classic algorithm for solving shortest path in
weighted graphs without negative weights

• A greedy algorithm (irrevocably makes decisions
without considering future consequences)

• Intuition:
– shortest path from source vertex to itself is 0
– cost of going to adjacent nodes is at most edge weights
– cheapest of these must be shortest path to that node
– update paths for new node and continue picking

cheapest path

The Known
Cloud

V

Next shortest path from
inside the known cloud

W

Better path
to V? Not!

The Cloud Proof

• But, if path to V is shortest, path to W must be at least as long.
• So, how can the path through W to V be shorter?

Source

Inside the Cloud (Proof)

Prove by induction on # of nodes in the cloud:
Initial cloud is just the source with shortest path 0
Assume: Everything inside the cloud has the correct

shortest path
Inductive step: Once we prove the shortest path to

some node V (which is not in the cloud) is
correct, we add it to the cloud

When does Dijkstra’s algorithm not work?

Dijkstra’s vs BFS
At each step:

1) Pick closest unknown vertex
2) Add it to finished vertices
3) Update distances

Dijkstra’s Algorithm

At each step:
1) Pick vertex from queue
2) Add it to visited vertices
3) Update queue with neighbors

Breadth-first Search

Some Similarities:

The Trouble with
Negative Weighted Cycles

A B

C D

E

2 10

1-5

2

What’s the shortest path from A to E?

Problem?

4

Some Applications:
Moving Around Washington

What’s the fastest way from Seattle to Spokane?

Answer:

Some Applications:
Communication in Washington

What’s the cheapest inter-city network?

Spanning tree: a subset of the edges from a
connected graph that…
… touches all vertices in the graph (spans the graph)
… forms a tree (is connected and contains no cycles)

Minimum spanning tree: the spanning tree with the
least total edge cost.

Spanning Tree

4 7

1 5

9

2

Two Different Algorithms

Prim’s Algorithm
Almost identical to Dijkstra’s

Kruskals’s Algorithm
Completely different!

Prim’s Algorithm for
Minimum Spanning Trees

A node-oriented greedy algorithm (builds an MST
by greedily adding nodes)

Select a node to be the “root” and mark it as known
While there are unknown nodes left in the graph

Select the unknown node n with the smallest cost from
some known node m

Mark n as known
Add (m, n) to our MST
Update cost of all nodes adjacent to n

Runtime: Proof:

Prim’s Algorithm In Action

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

5

Kruskal’s Algorithm for
Minimum Spanning Trees

An edge-oriented greedy algorithm (builds an
MST by greedily adding edges)

Initialize all vertices to unconnected
While there are still unmarked edges

Pick the lowest cost edge e = (u, v) and mark
it

If u and v are not already connected, add e to the
minimum spanning tree and connect u and v

Sound familiar?

Kruskal’s Algorithm In Action

A

C

B

D

F H

G

E

2 2 3

2
1

4

10

8

1
94

2

7

Play at Home with Prim
A

C

B

D

F
H

G

E

1

7
6

5

11

4

12

13

2
3

9

10

4

1. Starting at node A, find the MST using Prim’s method.
(continue on next slide)

Play at Home with Kruskal
A

C

B

D

F
H

G

E

1

7
6

5

11

4

12

13

2
3

9

10

4

2. Now find the MST using Kruskal’s method.
3. Under what conditions will these methods give the same result?
4. What data structures should be used for Kruskal’s? Running time?

Proof of Correctness
We already showed this finds a spanning tree:

That was part of our definition of a good maze.

Proof by contradiction that Kruskal’s finds the minimum:
Assume another spanning tree has lower cost than Kruskal’s
Pick an edge e1 = (u, v) in that tree that’s not in Kruskal’s
Kruskal’s tree connects u’s and v’s sets with another edge e2
But, e2 must have at most the same cost as e1!
So, swap e2 for e1 (at worst keeping the cost the same)
Repeat until the tree is identical to Kruskal’s: contradiction!

QED: Kruskal’s algorithm finds a minimum spanning tree.

Kruskal’s Implementation

Initialize all vertices to unconnected
While there are still unmarked edges

Pick the lowest cost edge e = (u, v) and mark it

If u and v are not already connected, add e to the
minimum spanning tree and connect u and v

What data structures?

Running time?

