
CSE 326: Data Structures
Topic 2: Asymptotic Analysis

Luke McDowell
Summer Quarter 2003

Course Policies – Updated
• Written homeworks

– Due at the start of class on due date
– No late homeworks accepted

• Programming homeworks
– Turned in electronically before 11pm on due date
– Once per quarter: use your “late day” for extra 24 hours – Must email TA

• Work in teams only on explicit team projects
– Appropriate discussions encouraged – see website

• Approximate Grading
– Weekly assignments: 35%
– Midterm: 20% Friday July 25, in class
– Final: 30% Friday Aug. 22 in class
– Best of above 3: 10%
– Participation: 5%

Analysis of Algorithms

• Efficiency measure
– how long the program runs time complexity
– how much memory it uses space complexity

• For today, we’ll focus on time complexity only

• Why analyze at all?
– Confidence: algorithm will work well in practice
– Insight : alternative, better algorithms

Asymptotic Analysis

• Complexity as a function of input size n
T(n) = 4n + 5
T(n) = 0.5 n log n - 2n + 7
T(n) = 2n + n3 + 3n

• What happens as n grows?

Why do we care?
• Most algorithms are fast for small n

– Time difference too small to be noticeable
– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice
– Databases, internet, graphics, …

• Time difference really shows up as n grows!

Luke Takes a Break

bool ArrayFind (int array[],
int n,
int key)

{
// Insert your algorithm here

}

2 3 5 16 37 50 73 75 126

What algorithm would you choose
to implement this code snippet?

Luke Takes a Break:
Simplifying assumptions

• Ideal single-processor machine (serialized
operations)

• “Standard” instruction set (load, add, store, etc.)
• All operations take 1 time unit (including, for our

purposes, each Java or C++ statement

LTaB: Analyzing Code

Basic Java/C++ operations
Consecutive statements

Conditionals
Loops

Function calls
Recursive functions

Constant time
Sum of times
Larger branch plus test
Sum of iterations
Cost of function body
Solve recurrence relation

LTaB: Linear Search Analysis
bool ArrayFind (int array[],

int n,
int key)

{

for(int i = 0; i < n; i++)
{

// Found it!
if(array[i] == key)

return true;
}
return false;

}

• Best Case:

• Worst Case:

LTaB: Binary Search Analysis
bool ArrayFind (int array[], int s,

int e, int key) {
// The subarray is empty
if(s > e)

return false;

// Search this subarray
int mid = (e + s) / 2;
if(array[key] == array[mid]) {

return true;
} else if(key < array[mid]) {

return ArrayFind(array, s,
mid-1, key);

} else {
return ArrayFind(array, mid+1,

e, key);
}

• Best case:

• Worst case:

Back to work:
Solving Recurrence Relations

1. Determine the recurrence relation. What are the base case(s)?

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

Linear Search vs Binary Search

Worst Case

Best Case

Binary SearchLinear Search

So … which algorithm is best?
What tradeoffs did you make?

Fast Computer vs. Slow Computer Fast Computer vs. Smart Programmer
(round 1)

Fast Computer vs. Smart Programmer
(round 2) Asymptotic Analysis

• Asymptotic analysis looks at the order of the
running time of the algorithm
– A valuable tool when the input gets “large”
– Ignores the effects of different machines or different

implementations of the same algorithm
• Intuitively, to find the asymptotic runtime, throw

away the constants and low-order terms
– Linear search is T(n) = 2n + 1 ? O(n)
– Binary search is T(n) = 4 log2n + 2 ? O(log n)

Remember: the fastest algorithm has the
slowest growing function for its runtime

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently
large”, f(n) will be “greater than or equal to” g(n)

f(n) = n3 + 2n2

g(n) = 100n2 + 1000

Order Notation: Definition
O(f(n)) is a set of functions

g(n) ? O(f(n)) iff
There exist c and n0 such that g(n) ? c f(n) for all n ? n0

Example:
100n2 + 1000 ? 5 (n3 + 2n2) for all n ? 19
So g(n) ? O(f(n))

Sometimes, you’ll see the notation g(n) = O(f(n)). This equivalent
to g(n) ? O(f(n)). However, the notation O(f(n)) = g(n) is not
correct

Order Notation: Example

100n2 + 1000 ? 5 (n3 + 2n2) for all n ? 19
So g(n) ? O(f(n))

Oops: Set Notation

1.001n + 3n2

O(n3)

45697 n 3- 4n
2n2 + 10

100n2 log n

“O(f(n)) is a set
of functions”

So we say both
100n2 log n = O(n3) and

100n2 log n ? O(n3)

Set Notation

1.001n + 3n2O(n3)

45697 n 3- 4n2n2 + 10

100n2 log n

O(2n)
1.5n - 100

2n + n1000 6n log n2

Set notation allows us to
formalize our intuition

O(n3) ? O(2n)

Big-O Common Names

– constant: O(1)
– logarithmic: O(log n) (logkn, log n2 ? O(log n))
– poly-log: O(logk n)
– linear: O(n)
– log-linear: O(n log n)
– superlinear: O(n1+c) (c is a constant > 0)
– quadratic: O(n2)
– cubic: O(n3)
– polynomial: O(nk) (k is a constant)
– exponential: O(cn) (c is a constant > 1)

Meet the Family
• O(f(n)) is the set of all functions asymptotically

less than or equal to f(n)
– o(f(n)) is the set of all functions asymptotically

strictly less than f(n)

• ? (f(n)) is the set of all functions asymptotically
greater than or equal to f(n)
– ? (f(n)) is the set of all functions asymptotically

strictly greater than f(n)

• ? (f(n)) is the set of all functions asymptotically
equal to f(n)

Meet the Family Formally
(don’t worry about dressing up)

• g(n) ? O(f(n)) iff
There exist c and n0 such that g(n) ? c f(n) for all n ? n0
– g(n) ? o(f(n)) iff

There exists a n0 such that g(n) < c f(n) for all c and n ? n0

• g(n) ? ? (f(n)) iff
There exist c and n0 such that g(n) ? c f(n) for all n ? n0
– g(n) ? ? (f(n)) iff

There exists a n0 such that g(n) > c f(n) for all c and n ? n0

• g(n) ? ? (f(n)) iff
g(n) ? O(f(n)) and g(n) ? ? (f(n))

Big-Omega et al. Intuitively

>?
<o
=?
??
?O

Mathematics RelationAsymptotic Notation

True or False?

n3 + 4 ? ? (n3)

n3 + 4 ? o(n4)
n log n ? ? (n2)
n log n ? O(2n)

10-10 n2 ? ? (n2)

10,000 n2 + 25n ? ? (n2)

Types of Analysis

Two orthogonal axes:
– bound flavor

• upper bound (O, o)
• lower bound (? , ?)
• asymptotically tight (?)

– analysis case
• worst case (adversary)
• average case
• best case
• “amortized”

LTaB: Pros and Cons of
Asymptotic Analysis

Proof by...
• Counterexample

– show an example which does not fit with the theorem
– QED (the theorem is disproven)

• Contradiction
– assume the opposite of the theorem
– derive a contradiction
– QED (the theorem is proven)

• Induction
– prove for a base case (e.g., n = 1)
– assume for an anonymous value (n)
– prove for the next value (n + 1)
– QED

Inductive Proof of Correctness
int sum(int v[], int n)
{

if (n==0) return 0;
else return v[n -1]+sum(v,n-1);

}

int sum(int v[], int n)
{

if (n==0) return 0;
else return v[n -1]+sum(v,n-1);

}

Theorem: sum(v,n) correctly returns sum of 1st n elements of
array v for any n.

Basis Step: Program is correct for n=0; returns 0. ?

Inductive Hypothesis (n=k): Assume sum(v,k) returns sum of
first k elements of v.

Inductive Step (n=k+1): sum(v,k+1) returns v[k]+sum(v,k),
which is the same of the first k+1 elements of v. ?

base case
Assume hypothesis

definition of T(n)
by in

(1) log1
() log

(2) ()
(2) (log)
(2) ((log) 1)
(2) ((

duction hypothesis

Q.E
log) (log 2))

(2) log(2) .D.
Thus: (

T b c b
T n b c n

T n T n c
T n b c n c
T n b c n
T n b c n
T n b c n

T n

? ? ?
? ?

? ?
? ? ?
? ? ?
? ? ?
? ?

) (log)n??

Inductive Proof (Binary Search)
If you know the closed form solution,
you can validate it by ordinary induction

Asymptotic Analysis Summary
• Determine what characterizes a problem’s size
• Express how much resources (time, memory, etc.)

an algorithm requires as a function of input size
using O(•), ? (•), ? (•)
– worst case
– best case
– average case
– common case
– overall

To Do
• Continue Homework 1

– Due Monday, June 30 at 11 PM sharp!
– Bring questions to section tomorrow

• Sign up for 326 mailing list(s)
• Continue reading 1.1-1.3, Chapters 2 and 3 in the

book
– Also start/skim on next sections: 4.1 (introduction to

trees), and sections 6.1-6.4 (priority queues and binary
heaps)

