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Something We Forgot: Disk Acesses

We Want To Minimize Disk Accesses!

1024 bytes

•Entire blocks transferred 
into memory at a time
•Transfer time much less
than seek time
•Therefore we need to 
minimize disk accesses!

Disk access time =
Seek time

+
Transfer time

M-ary Search Tree

• Maximum branching 
factor of M

• Complete tree has 
depth = logMN

runtime:

Problems with M-ary Search Trees
B-Trees

• B-Trees are specialized M-ary
search trees

• Each node has many keys (max M-1)
– subtree between two keys x and y 

contains leaves with values v such that
x ? v < y 

– binary search within a node 
to find correct subtree

• Each node takes one 
full {page, block} 
of memory
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Example

B-Tree with M = 4
and L = 4
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B-Tree Properties‡

• Properties
– maximum branching factor of M
– the root has between 2 and M children or at most L keys
– other internal nodes have between ?M/2? and M children
– internal nodes contain only search keys (no data)
– All values are stored at the leaves
– smallest datum between search keys x and y equals x
– each (non-root) leaf contains between ?L/2? and L keys
– all leaves are at the same depth

‡These are technically B+-Trees
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B-Tree Properties
• Properties

– maximum branching factor of M
– the root has between 2 and M children or at most L keys
– other internal nodes have between ?M/2? and M children
– internal nodes contain only search keys (no data)
– All values are stored at the leaves
– smallest datum between search keys x and y equals x
– each (non-root) leaf contains between ?L/2? and L keys
– all leaves are at the same depth

• Result
– tree is ? (logM n) deep
– all operations run in ? (logM n) time
– operations pull in about M/2 or L/2 items at a time
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B-Tree Nodes

• Internal node
– i search keys; i+1 subtrees; M - i - 1 inactive entries

• Leaf
– j values; L - j inactive entries
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…__ __
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Example Redux

B-Tree with M = 4
and L = 4
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Making a B-Tree

The empty 
B-Tree

M = 3 L = 2

3
Insert(3)

3 14
Insert(14)

Now, Insert(1)?

Splitting the Root

And create
a new root

1 3 14

1 3 14

14

1 3 14
3 14

Insert(1)

Too many 
keys in a leaf!

So, split the leaf.

Insertions and Split Ends

Insert(59)
14

1 3 14 59
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1 3 14

Insert(26)
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14 26 59

14 59
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And add 
a new child

Too many 
keys in a leaf!

So, split the leaf.

Propagating Splits

14 59

1 3 14 26 59

14 59

1 3 14 26 595

1 3 5

Insert(5)

5 14

14 26 591 3 5

59

5 595

1 3 5 14 26 59

59

14

Add new
child

Create a
new root

Too many keys in an internal node!

So, split the node.

Insertion in Boring Text

• Insert the key in its leaf
• If the leaf ends up with L+1 

items, overflow!
– Split the leaf into two nodes:

• original with ??(L+1)/2? items
• new one with ?(L+1)/2? items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

• If an internal node ends up 
with M+1 items, overflow!
– Split the node into two nodes:

• original with ??(M+1)/2? items
• new one with ?(M+1)/2? items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

• Split an overflowed root in two 
and hang the new nodes under 
a new root

This makes the tree deeper!



After More Routine Inserts
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Insert(79)

Deletion
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Delete(59)

What could go wrong?

Deletion and Adoption
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Delete(5)
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A leaf has too few keys!

So, borrow from a neighbor

Deletion with Propagation
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A leaf has too few keys!

And no neighbor with surplus!

So, delete
the leaf

But now a node 
has too few subtrees!

Adopt a
neighbor
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Finishing the Propagation 
(More Adoption)

Delete(1)
(adopt a

neighbor)
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A Bit More Adoption
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Delete(26)
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Pulling out the Root

14 79

89

79

89

A leaf has too few keys!
And no neighbor with surplus!

14 79

89

79

89

So, delete 
the leaf

A node has too few subtrees 
and no neighbor with surplus!

14 79

79 89

89

Delete 
the node

But now the root
has just one subtree!

Pulling out the Root (continued)
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The root
has just one subtree!

But that’s silly!

14 79

79 89

89

Just make
the one child
the new root!

Deletion in Two
Boring Slides of Text

• Remove the key from its leaf
• If the leaf ends up with fewer 

than ?L/2? items, underflow!
– Adopt data from a neighbor; 

update the parent
– If borrowing won’t work, delete 

node and divide keys between 
neighbors

– If the parent ends up with fewer 
than ?M/2? items, underflow!

Why will dumping keys 
always work if borrowing 
doesn’t?

Deletion Slide Two

• If a node ends up with fewer 
than ?M/2? items, underflow!
– Adopt subtrees from a neighbor; 

update the parent
– If borrowing won’t work, delete 

node and divide subtrees
between neighbors

– If the parent ends up with fewer 
than ?M/2? items, underflow!

• If the root ends up with only 
one child, make the child the 
new root of the tree

This reduces the height of 
the tree!

B-trees vs AVL trees
We have a database* with 100 million items (100,000,000):

• Depth of AVL Tree

• Depth of B+ Tree with B = 128, L = 64

* A very simple type of database, called 
“Berkeley Database” is basically a B+-tree

Thinking about B-Trees
• B-Tree insertion can cause (expensive) splitting 

and propagation
• B-Tree deletion can cause (cheap) borrowing or 

(expensive) deletion and propagation
• Propagation is rare if M and L are large   

(Why?)
• Repeated insertions and deletion can cause 

thrashing
• If M = L = 128, then a B-Tree of height 4 will 

store at least 30,000,000 items



A Tree with Any Other Name

FYI:
– B-Trees with M = 3, L = x are called 2-3 trees

• Nodes can have 2 or 3 keys

– B-Trees with M = 4, L = x are called 2-3-4 trees
• Nodes can have 2, 3, or 4 keys

Why would we ever use these?

To Do

• Finish Homework #3
– Don’t forget contest submission!

• Read Chapter 5


