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Something We Forgot: Disk Acesses
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We Want To Minimize Disk Accesses!
7\»

1024 bytes

«Entire blocks transferred
_— into memory at atime
Disk access time = eTransfer time much less
Seek time ] than seek time
*Therefore we need to
minimize disk accesses!

. |
Transfer time L

M-ary Search Tree

¢ Maximum branching
factor of M

¢ Complete tree has
depth =1 og,N

runtime:

Problems with M-ary Search Trees

B-Trees
¢ B-Trees are specidized M-ary
search trees
« Each node has many keys (max M-1)
— subtree between two keysx and y
contains leaves with values v such that [3]7[22] [ |
X?2Vv<y
— binary search within a node
to find correct subtree
¢ Each node takes one
full { page, block}

of memory




Example

B-TreewithM = 4
andL = 4

[af2] 1] [101112] ] [20025[26] ] 4042

[3]5]6]9] 1517 T ] [3032]33[36| [50/60]70]

B-Tree Propertiest

* Properties
— maximum branching factor of M
— the root has between 2 and Mchildren or at most L keys
— other internal nodes have between M/2? and M children
— internal nodes contain only search keys (no data)
— All values are stored at the leaves
— smallest datum between search keys x and y equals x

— each (non-root) leaf contains between 72L/2?and L keys
— al leaves are at the same depth

*These are technically B*-Trees

B-Tree Properties

* Properties
— maximum branching factor of M
— the root has between 2 and M children or at most L keys
— other internal nodes have between ?M 2?and Mchildren
— internal nodes contain only search keys (no values)
— All values are stored at the leaves
— smallest datum between search keys x and y equals x

— each (non-root) leaf contains between 72L/2?and L keys
— all leaves are at the same depth

B-Tree Properties

* Properties
— maximum branching factor of M
— the root has between 2 and M children or at most L keys
— other internal nodes have between M/2? and M children
— internal nodes contain only search keys (no data)
— All values are stored at the leaves
— smallest datum between search keys x and y equals x
— each (non-root) leaf contains between 72L/2?and L keys
— al leaves are at the same depth
¢ Result
— treeis? (1 ogy, n) deep
— al operationsrunin? (1 ogy n) time

— operationspull inabout M 2 or L/ 2 itemsat atime

B-Tree Properties

* Properties
— maximum branching factor of M
— the root has between 2 and M children or at most L keys
— other internal nodes have between M/2? and M children
— internal nodes contain only search keys (no data)
— All values are stored at the leaves
— smallest datum between search keys x and y equals x
— each (non-root) leaf contains between 2L/ 2? and L keys
— all leaves are at the same depth

B-Tree Nodes

« Internal node
— i searchkeys; i +1 subtrees; M - i - 1 inactiveentries

(T ] |
Jrl2 i M- 1
o Leaf

—j vaues L - | inactiveentries

e




Example Redux

B-TreewithM = 4
andL = 4

[1]2] 1] [1011]127] ] [20]25]2¢] ] [40]42]

[3]5]6]9] 1517 T ] [3032]33[36| [50/60]70]

Making aB-Tree

Insert(3)

(3]

Insert(14)

Now, Insert(1)?

Splitting the Root

Too many
keysin aleaf!

And create
anew root

Insert(1)

So, split the leaf.

Insertions and Split Ends

Too many
sin aleaf!

Insert(59)

Insert(26)

So, split the leaf.

anew child

Propagating Splits

Insert(5)

Create a
new root

So, split the node.

Insertion in Boring Text

« Insert thekey initsleaf

¢ If theleaf endsup with L+1
items, over flow!
— Split the leaf into two nodes:
« origina with 7 L+1) / 2?items
* new onewith A L+1) / 2?items
— Add the new child to the parent
— If the parent ends up with M+1
items, over flow!

~

This makes the tree deeper! -

« If aninternal node ends up
with M+1 items, over flow!
— Split the node into two nodes:
« origina with 7 Mr1) / 2?items
* new onewith A Mr1) / 2?items
— Add the new child to the parent
— If the parent ends up with M+1
items, over flow!

¢ Split an overflowed root in two

and hang the new nodes under
anew root




After More Routine Inserts

Insert(89)
Insert(79)

Deletion

Delete(59)

What could go wrong?

Deletion and Adoption

A leaf hastoo few keys!

Deletion with Propagation

A leaf hastoo few keys!

Delete(3)

But now anode
has too few subtrees!

So, delete

the leaf

Finishing the Propagation
(More Adoption)

Adopt a

neighbor

A Bit More Adoption

Delete(1)

(edopt a
neighbor)




Pulling out the Root

A leaf hastoo few keys!
And no neighbor with surp|us!

Delete(26) So, delete

the leaf

But now the root
has just one subtree!

A node has too few subtrees

Pulling out the Root (continued)

Theroot
has just one subtree!

Just make
the one child
the new root!

But that' s silly!

d no neighbor with surplus!
Delete
the node
Deletion in Two

Boring Slides of Text

« Removethe key fromits leaf
« If theleaf ends up with fewer
than 1./ 22items, under flow!

— Adopt data from a neighbor;
update the parent
— If borrowing won't work, delete [+

Why will dumping keys

Deletion Side Two

« If anode ends up with fewer
than v 22items, under flow!
— Adopt subtrees from a neighbor;
update the parent

— If borrowing won’t work, delete
node and divide subtrees

node and divide keys between
neighbors

— If the parent ends up with fewer
than 2M 2?items, under flow!

“— always work if borrowing
doesn’'t?

between neighbors

— If the parent ends up with fewer
than 2M 2?items, under flow!

« If theroot ends up with only

This reduces the height of

. X /"~ thetree!
one child, makethe childthe |«

new root of the tree

B-treesvs AVL trees

We have a database* with 100 million items (100,000,000):
¢ Depth of AVL Tree

¢ Depth of B+ TreewithB =128, L = 64

* A very simple type of database, called
“ Berkeley Database” isbasically a B*-tree

Thinking about B-Trees

« B-Treeinsertion can cause (expensive) splitting
and propagation

« B-Tree deletion can cause (cheap) borrowing or
(expensive) deletion and propagation

* Propagation israre if Mand L are large
(Why?)

* Repeated insertions and deletion can cause
thrashing

« IfM= L = 128, then aB-Tree of height 4 will
store at least 30,000,000 items




A Tree with Any Other Name

FYI:
— B-TreeswithM = 3,L = x arecalled 2-3 trees
« Nodes can have 2 or 3 keys
— B-TreeswithM = 4, L = x arecdled 2-3-4 trees
« Nodes can have 2, 3, or 4 keys

Why would we ever use these?

To Do

¢ Finish Homework #3
— Don’t forget contest submission!
¢ Read Chapter 5




