1.a
fill_label( k integer, v struct node pointer):void{

            if (v=null) return;


v.label=k;


fill_label(k+1, v.left);



fill_label(k+2, v.middle);



fill_label(k+3, v.right);


}

b. What is the time complexity of fill_label( ) as a function of the number of nodes, n, in the tree? Explain. 

Ө(n)  - Like in any other tree traversal (binary or not), each node is visited exactly once. The above code is actually pre-order with some additional O(1) operations in each node. 

c. What is the space complexity of fill_label( ) as a function of the number of nodes, n, in the tree? Explain. 

Ө(n) – there are no local variables, but due to the recursion we need to store in the stack the details (parameters, etc.) of the currently executed functions. The space complexity is therefore Ө(depth of recursion). In the worst case, this can be Ө(n).
d. Do your answers to either of b or c change if it is known that the tree is balanced? Explain.

The time complexity does not change – we still need to visit and label each of the nodes.

The space complexity is reduced to Ө(log n), since now the maximum depth of the recursion is Ө(log n) - the path from the root of the recursion tree to the currently labeled node represents the currently open recursive calls at any moment. 
2. 
MidTermFunction(p: struct node pointer) {

   temp : struct node pointer;

   prev: struct node pointer;  // a pointer to remember the previous node

   temp = p.next;
// temp starts at the first element of the list

   prev = p;

// prev starts at header of the list

   while ( temp != NULL ) {


// check if data field is odd


if ((temp.data mod 2) != 0) {



// odd number, so remove the node



temp = temp.next;



free (prev.next);



prev.next = temp;

}else {

// even number, so simply increment pointers

temp = temp.next;

prev = prev.next;

}
     } // end of while loop

} // end of function

The logic is: If the data field is even, do nothing to the list and move on to the next node. If the data field is odd, remove that node by making the necessary changes to the link list.  For this, we use two pointers – one that points to the data that is to be removed, while the other points to the previous node in the list, whose ‘next’ field needs to be adjusted.

3.  (sketch) Use two balanced binary rank trees. One for the green and one for the red elements. 
· Insert(i) – insert into the green tree
· PaintRed(i) – delete from the green tree and insert to the red tree.

· FindDiff(k) – find the two sums in each of the trees and calculate the difference.

4. Is there an AVL tee of height 4 and 11 nodes? Justify your answer.

No. Let S(h) be the minimum number of nodes in an AVL tree of height h.

The book (p.119) discusses why that minimum number of nodes satisfies S(h) = S(h–1) + S(h–2) + 1.

Since we know that S(0) = 1 and S(1) = 2, we can derive that:

   S(2) = 2 + 1 + 1 = 4

   S(3) = 4 + 2 + 1 = 7

   S(4) = 7 + 4 + 1 = 12

In other words, the minimum number of nodes in an AVL tree of height 4 is 12, hence there is no AVL tree with 11 nodes that is of height 4.

Note: If there were one, showing an example would have sufficed.  However, examples are unconvincing when you need to demonstrate that there is no such tree or, in more general terms, that no element exists that satisfies some property.

5.  (sketch): ‘feed’ the array from both sides, that is ,one stack will be located in indices 0,1,..k, and the second one in n-1,n-2,…,k+1. k changes dynamically according to the sizes of the stacks.

6.   (sketch): A possible data structure is a balanced binary search tree (e.g., an AVL tree) with the values m = (x + y) as keys.  Each node in this AVL tree points to another balanced binary search tree that holds one element for every point whose coordinates sum up to that same m.  In each of these (“secondary”) trees the key is the x coordinate (symmetrically, we could take the y coordinate as the key).
7.  The algorithm rests on one key idea: an in-order traversal (i.e., left tree–node–right tree) of a binary search tree visits the elements of the tree in ascending order of their keys.  Hence, an in-order traversal guarantees that:

(a) when node x in TI is visited, all nodes in TI with keys k < x.key will have been visited already, and

(b) no nodes in TI with keys k > x.key will have been visited prior to x.

Therefore, keeping a running total (sum) of the keys of all nodes in TI visited prior to x will yield exactly the value of x’s key in the new tree TO.

Below we will assume that a node in the tree contains fields key, left, and right with their usual semantics, and the definition of a tree reflects that.  To solve the problem, call createDerivedTree(T1), where T1 points to the root of the input tree.
createSumTree(TO, TI: tree reference; sum: integer reference)

{

   if (TI == null)          /* when the bottom is reached ...     */

   {

      TO = null;

      return;

   }

   TO = new (tree);       /* allocating space for a node in TO  */

   createSumTree(TO.left,TI.left, sum); /* visiting the left sub-tree  */

   sum = sum + TI.key;          /* handling the root of the sub-trees */

   TO.key = sum;

   createSumTree(TO.right, TI.right, sum);/* visiting the right sub-tree*/

}

createDerivedTree(TI: tree reference): tree reference

{

   TO: tree reference;  /* the tree that will be created as a result */

   sum: integer reference; /* the running total sum of keys of all visited nodes */

   TO = null; sum = 0;     /* initializations */

   createSumTree(TO, TI, sum);

}


























































