1

CSE 326 Autumn 2006
Section 4 Notes

Binary Search Tree Summary

All search trees below are binary in the sense that each node has at most two children, so we will call
them collectively binary search trees (BSTs). However, the basic, unbalanced binary search tree is also
called the BST. It will be clear from the context which one is meant.

In the table below, n represents the number of nodes in a tree.
All BSTs satisfy the constraint of BST order, that is, key(le ftchild) < key(parent) < key(rightchild).

The BST order does not use < inequalities because we can handle duplicates by keeping a counter at
each node. This is just a performance hack, but note that the path between two copies with the same
key will only pass between more copies of that key.

The running time analysis is always worst-case, but amortized worst-case is averaged over any sequence
of operations.

The space requirements are those beyond what is required to store the key and child pointer at each
node, which is the same O(2n) for all BSTs.

Constant factors are given for comparison but are actually implementation-dependent.
Logarithms are base 2 unless otherwise specified, but all logarithmic bases are asymptotically the same.

INSERT is a special-case of CONTAINS which adds the new node at the first null child reached in a
traversal.

REMOVE is a special-case of CONTAINS on the left and right subtrees in which the desired key is first
found, then removed, and finally the remaining tree is rearranged to fill the “hole.”

BST Type Insert Remove Contains | Space | Analysis
Basic BST O(n) O(n) O(n) O(1) | Worst-case
AVL Trees | O(2logyn) | O(2logyn) | O(2logyn) | O(n) | Worst-case
Splay Trees | O(logyn) O(logy n) O(logy n) O(1) | Amortized

Basic BST: In the worst-case, the tree can be completely unbalanced with all nodes in a linear chain.

However, no extra information needs to be maintained at each node. This is analogous to a basic
binary heap.

AVL Trees: We can force the trees to be balanced by keeping some extra information (the height) at each

node, trading off increased space for decreased running time. This is analogous to leftist heaps versus
the basic binary heap.

The height information is used to maintain the AVL property, which states that the heights of the left
and right subtrees never differ by more than 1. In symbols: |height(left) — height(right)| < 1. We
can show that this bounds the height of the entire tree to O(logn), which improves the running times
of CONTAINS and by extension all other operations.

The AVL property is maintained by single and double rotations.

Splay Trees: Similar to AVL trees, but the last accessed item is always moved to the top, using zig-zag

rotations (which are the same as AVL double rotations) or zig-zig rotations. There are two symmetric
cases for both, or four total: zig-zag to the left then right, zig-zag to the right then left, zig-zig to the
left, zig-zig to the right. This gives an amortized worst-case running time of O(logn).

2 Pointers, predecessors, successors, FindMin, FindMax
Because of the BST order, you know that you can sort all the nodes using an in-order traversal:

e Output the left subtree recursively
e Output the parent

e Output the right-subtree recursively

When you remove an item from a search tree, you must replace it with either the previous item or the
next item in the sorted order. The previous sorted item is also the rightmost child of the left subtree and is
called the predecessor. The next sorted item is also the leftmost child of the right subtree and is called the
successor.

There are many operations which we could do in O(1) time if we kept extra pointers with every BST.
Two important examples are

1. finding the predecessor or successor of a node when we remove it

2. finding the minimum or maximum element

Updating these pointers takes O(log n) time because the tree must be re-traversed to find the new pointer
target if new items are added or old items removed. To find the minimum (maximum) element in a tree,
we only have to keep traversing the left (right) child until we reach a null and then return the last non-null
node. To find the predecessor (successor), we have to traverse the left child and then go right until we reach
null (or traverse the right child and then go left until we reach null). These operations can be “absorbed”
into the running times of INSERT and REMOVE which are already Q(logn) for any BST.

If we had doubly-linked lists, we could update the pointers in O(1) also, but this would increase the
storage needed at each node (one extra child pointer). For the minimum or maximum element, we could
keep O(1) new pointers with the tree, but for predecessors and successors, we would need to keep two extra
pointers at each node. This is a total O(3n) of extra space. Keep this time-space tradeoff in mind if you
need to optimize the above operations and have lots of memory to spare.

