B-Trees

Section 4.7 in Weiss

Solution: B-Trees
 specializedM-ary search trees

e Eachnode has (up to) M-1 keys:
— subtree between two keysindy contains
leaves withvalues v such that
Xsv<y

¢ Pick branching factor M
such that each node
takes one full
{page, block}
of memory

M-ary Search Tree

e Maximum branching factor of
« Complete tree has height =

disk accesses féind:

Runtime offind:

B-Trees

What makes them disk-friendly?

1. Many keysstored in a node
« All brought to memory/cache in one access!

2. Internal nodes contaonly keys;
Only leaf nodes contain keys and actual data

* The tree structure can be loaded into memory
irrespective of data object size

» Data actually resides in disk

B-Tree: Example

B-Tree withM = 4 (# pointers in internal node)
andL = 4 (# data items in leaf)

[idad]

[ada2 T] \

[20[25]26] | \
[50fe0[7q]]

157 1] [30[32[33[3¢]

S HEHE]

Data objects, that I'll Note: All leaves at the same,depth

ignore in slides

B-Tree Propertie$

— Data is stored at tHeaves

— All leavesare at the same depth and contain betweg
[L/2]andL data items

— Internalnodes store up to M-1 keys

— Internalnodes have betwe&W/2|andM children

— Root(special case) has between 2 dhildren (or
root could be a leaf)

#These are technically*Blrees &

EN

Example, Again

B-Tree withM = 4
andL = 4

/
[1]2] 1] [Lof1aje] [20[25[26]] o2l T\
[3]5]6]9] 157 1] [30[32[33[3¢] [50f60[7q]]

(Only showing keys, but leaves also have data!) B

B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

¢ Depth of AVL Tree

« Depth of B+ Tree with M = 128, = 64

Building a B-Tree

L] 3]]
Insert@) Insert(L4)
The empty
B-Tree
M=3L=2

Now, Insert()?

w=3t-2 Gplitting the Root

M=31L=2

Overflowing leaves oo many

keys in a leaf!
14|
14|
Insert69) Insert@6)
4t] 7o
i

so,split the leaf

a new child

El

11

Too many
keys in a leaf!
[1]3]i4 4]
Insert(L) {1 | And create
P

/ 3 anew root| [1[3] [14

HEIEE
So, split the leaf.
10
M=3L =2 _ _
Propagating Splits
[1459
1459
Insert6) B] Add new
B9l] child
Split the leaf, but no space in parent!
14_]
ST
N c
B9 | reate a

new root

El

So, split the node. *

Insertion Algorithm

1. Insert the key in its leaf 3. If an internal node ends up
2. Ifthe leaf ends up with L+1 With M+1 items,overflow!
items,overflow! — Split the node into two nodes:
— Split the leaf into two nodes: + original with [(M¥1) / 2Titems
original with [(L+1) / 2items + new one wit (M1)/ 2 Jitems
new one witt (L+1) / 2 items — Add the new child to the parent
— Add the new child to the parent ~ — !f the parent ends up wittt1
— Ifthe parent ends up wittt1 items,overflow!
items,overflow!

4. Split an overflowed root in twg
 and hang the new nodes undg
a new root

=

This makes the tree deepe/r!

13

Deletion

1. Delete item from leaf
2. Update keys of ancestors if necessary

Delete69)

HEEN Bl]

What could go wrong?

15

Does Adoption Always Work?

» What if the sibling doesn’t have enough for you to
borrow from?

e.g. you havéL/2]-1 and sibling halsL/2]?

17

Insert@9)
Insert(79)

Deletion and Adoption

A leaf has too few keys!

Deletef)

7ol Jleel] L[] =l

So, borrow from a sibling

Deletion and Merging

A leaf has too few keys!

Delete@)

So, delete|
the leaf

But now an internal node

has too few subtrees! 1

=3t =z2pDeletion with Propagatio e bs A Bit More AdOptiOﬂ

(More Adoption)
Adopt a Delete(l)
neighbor (adopt a
sibling)
19 20
M:Fngzl.z h M=3L=2 _]
u Ing OUt t e ROOt A leaf has too few keys! PU”|ng Out the ROOt (Contlnued)
And no sibling with surplus!
Theroot
has just one subtree!
Delete@6) So, delet Simply make
the leaf; the one child
/ merge the new root!
[l i8]] [l Jesl] []
But now theroot A node has too few subtrees
has just one subtree! and no neighbor with surplus!
Delete
the node
21
Deletion Algorithm Deletion Slide Two
1. Remove the key from its leaf 3. If an internal noge ends up with
fewer thad' ™ 27items,under flow!
. — Adopt from a neighbor;
2. If the leaf ends up with fewer update the parent
thanlL/ 27items,under flow! — If adoption won't work,
— Adopt data from a sibling; merge with neighbor
update the parent — If the parent ends up with fewer than
— If adopting won't work, delete '™ 27items,underflow! This reduces the
node and merge with neighbor r'/ height of the tree!
- f” the ’::r(:ﬂ;eq('jts up with 4. 1f the root ends up with only one |
ewer thartM 2 fitems, child, make the child the new robt
under flow!
2 of the tree 24

Thinking about B-Trees

B-Tree insertion can cause (expensive) splitting a
propagation

B-Tree deletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation
Propagation is rare MandL are large

(Why?)

If M= L = 128, then a B-Tree of height 4 will
store at least 30,000,000 items

25

Tree Names You Might Encounter

FYI:
— B-Trees withtM = 3,L = x are called-3 trees
« Nodes can have 2 or 3 keys
— B-Trees wittM = 4, L = x are called?-3-4 trees
« Nodes can have 2, 3, or 4 keys

26

