CSE 326: Data Structures

Neva Cherniavsky
Summer Quarter 2006
Lecture 1

Introduction

* Me: 4th year graduate student at UW
nchernia@cs.washington.edu
Office hours: Th. 12:30-1:30 CSE 210
* Gary Yngve
gyngvel@cs.washington.edu
Office hours: Tu. 9:30-10:30 CSE 220

6/19/06 CSE 326 - Introduction 2

Today’s Outline

Class Overview

* Introductions

* What is this course about?
* Administrative Info

* Review: Queues and stacks

6/19/06 CSE 326 - Introduction

Introduction to many of the basic data structures
used in computer software

» Understand the data structures

> Analyze the algorithms that use them

> Know when to apply them

Practice design and analysis of data structures.
Practice using these data structures by writing
programs.

Make the transformation from programmer to
computer scientist

6/19/06 CSE 326 - Introduction

Goal

Today’s Outline

* You will understand
> what the tools are for storing and processing
common data types
» which tools are appropriate for which need
» So that you can
> make good design choices as a developer, project
manager, or system customer
* You will be able to
> Justify your design decisions via formal reasoning

» Communicate ideas about programs clearly and

recisel
19/06 p y

6/ CSE 326 - Introduction

* Introduction

* What is this course about?
* Administrative Info

* Review: Queues and stacks

6/19/06 CSE 326 - Introduction

Course Information

e Text: Data Structures & Algorithm Analysis in
Java, (Mark Allen Weiss), 2006
* Web page:
http://www.cs.washington.edu/326
* Mailing Lists:
> cse326-announce@cs.washington.edu
> cse326Q@cs.washington.edu
* EPost Message Board: Follow link from
homepage

6/19/06 CSE 326 - Introduction 7

Course Mechanics

» Written homeworks (8 total)
» Due at the start of class on due date
» Pseudocode, no code!

» Programming homeworks (3 total, with phases)
> InJava
» Turned in electronically and on paper

» Work in teams only on explicit team projects
» Appropriate discussions encouraged — see website
> Anytime you use someone else’s work, it's cheating

6/19/06 CSE 326 - Introduction 8

(Approximate) Grading

25% - Written Homework Assignments
Due every Wednesday at the start of class
25% - Programming Assignments
3 projects, broken into phases
20% - Midterm Exam
In class July 17
30% - Final Exam
In class August 18 (last day)

6/19/06 CSE 326 - Introduction 9

Project and homework
guidelines

* On the website - note especially
Homeworks: use pseudocode, not code. A
human being is reading your homeworks
See website for pseudocode examples
Projects: execution is only 40% of your
grade!

Spend time commenting your code as you
write - it will help you be a better
programmer

~

~ o~

~

6/19/06 CSE 326 - Introduction 10

Homework for Today!!

1) Sign up for mailing lists (immediately)
2) Project #1: Implement Stacks and Queues.
Due in one week.
3) Reading in Weiss
1) Chapter 1 (review): Mathematics and Java
2) Chapter 3 (Project #1): Stacks and Queues
3) Chapter 2 (Homework #1): Algorithm Analysis
4) Homework #1 is based off of reading and will be
released next class.

6/19/06 CSE 326 - Introduction "

Project 1

» Soundblaster! Reverse a song
» Implement a stack and a queue to make
the “Reverse” program work
* Read the website
» Detailed description of assignment

» Detailed description of how programming
projects are graded

6/19/06 CSE 326 - Introduction 12

Data Structures

“Clever” ways to organize information in
order to enable efficient computation

> What do we mean by clever?
> What do we mean by efficient?

6/19/06 CSE 326 - Introduction 13

Picking the best
data structure for the job

» The data structure you pick needs to
support the operations you need

« Ideally it supports the operations you will
use most often in an efficient manner

» Abstract Data Type (ADT) - A data object
and a set of operations for manipulating it
» List ADT with operations insert and delete
» Stack ADT with operations push and pop

6/19/06 CSE 326 - Introduction 14

Terminology

» Abstract Data Type (ADT)
> Mathematical description of an object with set of
operations on the object. Useful building block.
+ Algorithm
> A high level, language independent, description of
a step-by-step process

+ Data structure
» A specific family of algorithms for implementing an
abstract data type.
» Implementation of data structure

» A specific implementation in a specific language
6/19/06 CSE 326 - Introduction 15

Terminology examples

« A stack is an abstract data type
supporting push, pop and isEmpty
operations

+ A stack data structure could use an
array, a linked list, or anything that can
hold data

* One stack implementation is found in
java.util.Stack

6/19/06 CSE 326 - Introduction 16

Concepts VS.

Mechanisms

Abstract + Concrete
Pseudocode Specific programming language
Algorithm * Program

> A sequence of high-level,
language independent
operations, which may act
upon an abstracted view of
data.

Abstract Data Type (ADT)
> A mathematical description

of an object and the set of
operations on the object.

6/19/06 CSE 326 -

> A sequence of operations in a
specific programming language,
which may act upon real data in
the form of numbers, images,
sound, etc.

Data structure
> A specific way in which a
program'’s data is represented,
which reflects the programmer’s
design choices/goals.

Introduction 17

Why So Many Data Structures?

Ideal data structure:

» oo«

“fast”, “elegant”’, memory efficient

Generates tensions:
» time vs. space
» performance vs. elegance
» generality vs. simplicity
» one operation’s performance vs. another’s

The study of data structures is the study of

tradeoffs. That’s why we have so many of them!
6/19/06 CSE 326 - Introduction 18

Today’s Outline

* Introductions

* What is this course about?
* Administrative Info

* Review: Queues and stacks

6/19/06 CSE 326 - Introduction 19

First Example: Queue ADT

* FIFO: First In, First Out
* Queue operations

create G endueue FEDCB dequeue
destroy
enqueue
dequeue
is_empty
6/19/06 CSE 326 - Introduction 20

Circular Array Queue Data

Stru%ture

[T I T T Tolelalelf[[[TTTTT]
i i

front back
How test for empty list?

enqueue (Object x) {

Q[back] = x ; .

back = (back + 1) % size How to l‘md K-th

} element in the queue?
dequeue () { What is complexity of

x = Q[front] ; these operations?

front = (front + 1) % size; . RO
() Limitations of this

) structure?
6/19/06 CSE 326 - Introduction 21

return x ;

Linked List Queue Data Structure

E le[F—{d[F—]e 4 E

front back

void enqueue (Object x) { Object dequeue() {

if (is_empty()) assert(!is_empty)
front = back = new Node (x) return_data = front->data
else temp = front
back->next = new Node (x) front = front->next
back = back->next delete temp
} return return_data
bool is_empty() { }
return front == null
}
6/19/06 CSE 326 - Introduction 2

Circular Array vs. Linked List

Too much space |Can keep

Kth element growing
accessed in O(1) |No back going
Not as Comp|ex around to front

Could make array |Linked list code
more robust more complex

6/19/06 CSE 326 - Introduction 23

Second Example: Stack ADT

« LIFO: Last In, First Out
+ Stack operations

create A EDCBA
destroy \‘ /’
push
pop

top
is_empty

mTmoaQw

6/19/06 CSE 326 - Introduction 24

Stacks in Practice

* Function call stack

* Removing recursion

» Balancing symbols (parentheses)

+ Evaluating Reverse Polish Notation

6/19/06 CSE 326 - Introduction 25

Algorithm Analysis: Why?

+ Correctness:
» Does the algorithm do what is intended.
> How well does the algorithm complete its goal
+ Performance:
> What is the running time of the algorithm.
> How much storage does it consume.
+ Different algorithms may correctly solve a
given task
> Which should | use?

6/19/06 CSE 326 - Introduction 26

Iterative Algorithm for Sum

* Find the sum of the first n integers
stored in an array v.

sum(integer array v, integer n) returns integer
let sum = 0
for i = 1...n
sum = sum + 1" number

return sum

Note the use of pseudocode

6/19/06 CSE 326 - Introduction

Programming via Recursion

» Write a recursive function to find
the sum of the first n integers
stored in array v.

sum(integer array v, integer n) returns integer
if n = 0 then
sum = 0
else
sum = n* number + sum of first n-1 numbers
return sum

6/19/06 CSE 326 - Introduction 28

Proof by Induction

» Basis Step: The algorithm is correct for
a base case or two by inspection.

* Inductive Hypothesis (n=k): Assume
that the algorithm works correctly for the
first k cases.

* Inductive Step (n=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.

6/19/06 CSE 326 - Introduction

Program Correctness by
Induction

Basis Step: sum(v,0) = 0. v

Inductive Hypothesis (n=k): Assume
sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0]+v[1]+..+v[k-1]
Inductive Step (n=k+1): sum(v,n) returns
v[k]+sum(v,k)= (by inductive hyp.)
vik]+(v[0]+v[1l]+. +v[k-1])=
v[0l+v[1l]+.+v[k-1]+v[k] ¥V

6/19/06 CSE 326 - Introduction 30

Algorithms vs Programs

» Proving correctness of an algorithm is very important
> a well designed algorithm is guaranteed to work correctly and
its performance can be estimated
» Proving correctness of a program (an implementation)
is fraught with weird bugs

> Abstract Data Types are a way to bridge the gap between
mathematical algorithms and programs

6/19/06 CSE 326 - Introduction 31

