
1

CSE 326: Data Structures

Neva Cherniavsky

Summer Quarter 2006

Lecture 1

6/19/06 CSE 326 - Introduction 2

Introduction

• Me: 4th year graduate student at UW

nchernia@cs.washington.edu

Office hours: Th. 12:30-1:30 CSE 210

• Gary Yngve

gyngve@cs.washington.edu

Office hours: Tu. 9:30-10:30 CSE 220

6/19/06 CSE 326 - Introduction 3

Today’s Outline

• Introductions

• What is this course about?

• Administrative Info

• Review: Queues and stacks

6/19/06 CSE 326 - Introduction 4

Class Overview

• Introduction to many of the basic data structures
used in computer software
› Understand the data structures
› Analyze the algorithms that use them
› Know when to apply them

• Practice design and analysis of data structures.
• Practice using these data structures by writing

programs.
• Make the transformation from programmer to

computer scientist

6/19/06 CSE 326 - Introduction 5

Goal

• You will understand
› what the tools are for storing and processing

common data types
› which tools are appropriate for which need

• So that you can
› make good design choices as a developer, project

manager, or system customer

• You will be able to
› Justify your design decisions via formal reasoning
› Communicate ideas about programs clearly and

precisely
6/19/06 CSE 326 - Introduction 6

Today’s Outline

• Introduction

• What is this course about?

• Administrative Info

• Review: Queues and stacks

2

6/19/06 CSE 326 - Introduction 7

Course Information

• Text: Data Structures & Algorithm Analysis in
Java, (Mark Allen Weiss), 2006

• Web page:
http://www.cs.washington.edu/326

• Mailing Lists:
› cse326-announce@cs.washington.edu
› cse326@cs.washington.edu

• EPost Message Board: Follow link from
homepage

6/19/06 CSE 326 - Introduction 8

Course Mechanics

• Written homeworks (8 total)
› Due at the start of class on due date
› Pseudocode, no code!

• Programming homeworks (3 total, with phases)
› In Java
› Turned in electronically and on paper

• Work in teams only on explicit team projects
› Appropriate discussions encouraged – see website
› Anytime you use someone else’s work, it’s cheating

6/19/06 CSE 326 - Introduction 9

(Approximate) Grading

 25% - Written Homework Assignments
Due every Wednesday at the start of class

25% - Programming Assignments
3 projects, broken into phases

20% - Midterm Exam
In class July 17

30% - Final Exam
In class August 18 (last day)

6/19/06 CSE 326 - Introduction 10

Project and homework
guidelines

• On the website - note especially
› Homeworks: use pseudocode, not code. A

human being is reading your homeworks
› See website for pseudocode examples
› Projects: execution is only 40% of your

grade!
› Spend time commenting your code as you

write - it will help you be a better
programmer

6/19/06 CSE 326 - Introduction 11

Homework for Today!!

1) Sign up for mailing lists (immediately)
2) Project #1: Implement Stacks and Queues.

Due in one week.
3) Reading in Weiss

1) Chapter 1 (review): Mathematics and Java
2) Chapter 3 (Project #1): Stacks and Queues
3) Chapter 2 (Homework #1): Algorithm Analysis

4) Homework #1 is based off of reading and will be
released next class.

6/19/06 CSE 326 - Introduction 12

Project 1

• Soundblaster! Reverse a song

• Implement a stack and a queue to make
the “Reverse” program work

• Read the website
› Detailed description of assignment

› Detailed description of how programming
projects are graded

3

6/19/06 CSE 326 - Introduction 13

Data Structures

“Clever” ways to organize information in
order to enable efficient computation

› What do we mean by clever?

› What do we mean by efficient?

6/19/06 CSE 326 - Introduction 14

Picking the best
data structure for the job

• The data structure you pick needs to
support the operations you need

• Ideally it supports the operations you will
use most often in an efficient manner

• Abstract Data Type (ADT) - A data object
and a set of operations for manipulating it
› List ADT with operations insert and delete
› Stack ADT with operations push and pop

6/19/06 CSE 326 - Introduction 15

Terminology

• Abstract Data Type (ADT)
› Mathematical description of an object with set of

operations on the object. Useful building block.

• Algorithm
› A high level, language independent, description of

a step-by-step process

• Data structure
› A specific family of algorithms for implementing an

abstract data type.

• Implementation of data structure
› A specific implementation in a specific language

6/19/06 CSE 326 - Introduction 16

Terminology examples

• A stack is an abstract data type
supporting push, pop and isEmpty
operations

• A stack data structure could use an
array, a linked list, or anything that can
hold data

• One stack implementation is found in
java.util.Stack

6/19/06 CSE 326 - Introduction 17

Concepts vs. Mechanisms

• Abstract

• Pseudocode
• Algorithm

› A sequence of high-level,
language independent
operations, which may act
upon an abstracted view of
data.

• Abstract Data Type (ADT)
› A mathematical description

of an object and the set of
operations on the object.

• Concrete

• Specific programming language
• Program

› A sequence of operations in a
specific programming language,
which may act upon real data in
the form of numbers, images,
sound, etc.

• Data structure
› A specific way in which a

program’s data is represented,
which reflects the programmer’s
design choices/goals.

6/19/06 CSE 326 - Introduction 18

Why So Many Data Structures?

Ideal data structure:

“fast”, “elegant”, memory efficient

Generates tensions:
› time vs. space
› performance vs. elegance

› generality vs. simplicity

› one operation’s performance vs. another’s
The study of data structures is the study of
tradeoffs. That’s why we have so many of them!

4

6/19/06 CSE 326 - Introduction 19

Today’s Outline

• Introductions

• What is this course about?

• Administrative Info

• Review: Queues and stacks

6/19/06 CSE 326 - Introduction 20

• FIFO: First In, First Out
• Queue operations

create
destroy
enqueue
dequeue
is_empty

First Example: Queue ADT

F E D C Benqueue dequeueG A

6/19/06 CSE 326 - Introduction 21

Circular Array Queue Data
Structure

enqueue(Object x) {
Q[back] = x ;
back = (back + 1) % size
}

b c d e f

Q
0 size - 1

front back

dequeue() {
x = Q[front] ;
front = (front + 1) % size;
return x ;
}

How test for empty list?

How to find K-th
element in the queue?

What is complexity of
these operations?

Limitations of this
structure?

6/19/06 CSE 326 - Introduction 22

Linked List Queue Data Structure
b c d e f

front back

void enqueue(Object x) {
if (is_empty())

front = back = new Node(x)
else

back->next = new Node(x)
back = back->next

}
bool is_empty() {

return front == null
}

Object dequeue() {
assert(!is_empty)
return_data = front->data
temp = front

front = front->next
delete temp
return return_data

}

6/19/06 CSE 326 - Introduction 23

Circular Array vs. Linked List

Can keep
growing

No back going
around to front

Linked list code
more complex

Too much space

Kth element
accessed in O(1)
Not as complex

Could make array
more robust

6/19/06 CSE 326 - Introduction 24

Second Example: Stack ADT

• LIFO: Last In, First Out
• Stack operations

› create
› destroy
› push
› pop
› top
› is_empty

A

B
C
D
E
F

E D C B A

F

5

6/19/06 CSE 326 - Introduction 25

Stacks in Practice

• Function call stack

• Removing recursion

• Balancing symbols (parentheses)

• Evaluating Reverse Polish Notation

6/19/06 CSE 326 - Introduction 26

Algorithm Analysis: Why?

• Correctness:
› Does the algorithm do what is intended.
› How well does the algorithm complete its goal

• Performance:
› What is the running time of the algorithm.
› How much storage does it consume.

• Different algorithms may correctly solve a
given task
› Which should I use?

6/19/06 CSE 326 - Introduction 27

Iterative Algorithm for Sum

• Find the sum of the first n integers
stored in an array v.

sum(integer array v, integer n) returns integer

let sum = 0

for i = 1...n

sum = sum + ith number

return sum

Note the use of pseudocode

6/19/06 CSE 326 - Introduction 28

Programming via Recursion

• Write a recursive function to find
the sum of the first n integers
stored in array v.

sum(integer array v, integer n) returns integer

 if n = 0 then
sum = 0

 else
 sum = nth number + sum of first n-1 numbers
 return sum

6/19/06 CSE 326 - Introduction 29

Proof by Induction

• Basis Step: The algorithm is correct for
a base case or two by inspection.

• Inductive Hypothesis (n=k): Assume
that the algorithm works correctly for the
first k cases.

• Inductive Step (n=k+1): Given the
hypothesis above, show that the k+1
case will be calculated correctly.

6/19/06 CSE 326 - Introduction 30

Program Correctness by
Induction

• Basis Step: sum(v,0) = 0.

• Inductive Hypothesis (n=k): Assume
sum(v,k) correctly returns sum of first k
elements of v, i.e. v[0]+v[1]+…+v[k-1]

• Inductive Step (n=k+1): sum(v,n) returns
v[k]+sum(v,k)= (by inductive hyp.)
v[k]+(v[0]+v[1]+…+v[k-1])=
v[0]+v[1]+…+v[k-1]+v[k]

6

6/19/06 CSE 326 - Introduction 31

Algorithms vs Programs

• Proving correctness of an algorithm is very important
› a well designed algorithm is guaranteed to work correctly and

its performance can be estimated

• Proving correctness of a program (an implementation)
is fraught with weird bugs
› Abstract Data Types are a way to bridge the gap between

mathematical algorithms and programs

