
1

CSE 326: Data Structures

Asymptotic Analysis

Neva Cherniavsky

Summer 2006

6/21/06 Algorithm Analysis 2

Comparing Two Algorithms
I want you to create an

algorithm that sorts all the
students in this class.

Time your algorithm; whoever’s
runs fastest will get stock options

Sure boss!

Angelina: adds more memory
Jennifer: discovers optimizing flag on compiler
Angelina: uses C++ instead of Java
Jennifer: faster processor
Angelina: makes data set pre-sorted (that cheating wench!)

6/21/06 Algorithm Analysis 3

What we want
• Rough Estimate

• Ignores Details
– Or really: independent of details

– We could have been sneaky & used those
methods; but both algorithms would benefit

– Even without an adversary, those factors will
improve over time

– So running time, pure and simple, is not a good
measure

6/21/06 Algorithm Analysis 4

Big-O Analysis
• Ignores “details”

• What are some details we should ignore?
– Speed of machine

– Programming language used

– Amount of memory

– Order of input

– Size of input (we’ll talk about this in a second)
– Compiler

6/21/06 Algorithm Analysis 5

Analysis of Algorithms

• Efficiency measure
– how long the program runs time complexity

– how much memory it uses space complexity

• Why analyze at all?

– Decide which one to implement before going to the
trouble

– Given code, idea of where bottlenecks will be – without
running and timing

6/21/06 Algorithm Analysis 6

Asymptotic Analysis

• Complexity as a function of input size n
T(n) = 4n + 5

T(n) = 0.5 n log n - 2n + 7

T(n) = 2n + n3 + 3n

• What happens as n grows?

One “detail” we won’t ignore – problem size, # elements

2

6/21/06 Algorithm Analysis 7

Why Asymptotic Analysis?
• Most algorithms are fast for small n

– Time difference too small to be noticeable

– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice
– Databases, internet, graphics, …

• Time difference really shows up as n grows!

6/21/06 Algorithm Analysis 8

Big-O: Common Names

– constant: O(1)
– logarithmic: O(log n)

– linear: O(n)

– quadratic: O(n2)

– cubic: O(n3)

– polynomial: O(nk) (k is a constant)
– exponential: O(cn) (c is a constant > 1)

6/21/06 Algorithm Analysis 9

Exercise

bool ArrayFind(int array[], int n, int key){
// Insert your algorithm here

}

2 3 5 16 37 50 73 75 126

What algorithm would you choose
to implement this code snippet?

6/21/06 Algorithm Analysis 10

Analyzing Code

Basic Java operations
Consecutive

statements
Conditionals

Loops
Function calls

Recursive functions

Constant time

Sum of times

Larger branch plus test

Sum of iterations
Cost of function body

Solve recurrence relation

Number of calls * work for
each call

Analyze your code!

6/21/06 Algorithm Analysis 11

Linear Search Analysis
bool LinearArrayFind(int array[],

int n,

int key) {

for(int i = 0; i < n; i++) {
if(array[i] == key)

// Found it!

return true;

}

return false;

}

Best Case: 4

Worst Case: 3n + 2

6/21/06 Algorithm Analysis 12

Binary Search Analysis
bool BinArrayFind(int array[], int low,

 int high, int key) {
// The subarray is empty
if(low > high) return false;

// Search this subarray recursively
int mid = (high + low) / 2;
if(key == array[mid]) {

return true;
} else if(key < array[mid]) {

return BinArrayFind(array, low,
 mid-1, key);

} else {
return BinArrayFind(array, mid+1,

 high, key);
}

Best case: 4

Worst case: log n?

We’ll analyze this
later

3

6/21/06 Algorithm Analysis 13

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base
case(s)?

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a
base case

6/21/06 Algorithm Analysis 14

Linear Search vs Binary
Search

Worst Case

Best Case

Binary SearchLinear Search

So … which algorithm is better?
What tradeoffs can you make?

4 at [0]

3n+2

4 at [mid]

4 log n + 4

6/21/06 Algorithm Analysis 15

Fast Computer vs. Slow
Computer

6/21/06 Algorithm Analysis 16

Fast Computer vs. Smart
Programmer (round 1)

6/21/06 Algorithm Analysis 17

Fast Computer vs. Smart
Programmer (round 2)

6/21/06 Algorithm Analysis 18

Asymptotic Analysis
• Asymptotic analysis looks at the order of the running

time of the algorithm
– A valuable tool when the input gets “large”

– Ignores the effects of different machines or different
implementations of the same algorithm

• Intuitively, to find the asymptotic runtime, throw away
the constants and low-order terms
– Linear search is T(n) = 3n + 2 ∈ O(n)

– Binary search is T(n) = 4 log2n + 4 ∈ O(log n)

Remember: the fastest algorithm has the
slowest growing function for its runtime

4

6/21/06 Algorithm Analysis 19

Asymptotic Analysis
• Eliminate low order terms

– 4n + 5 ⇒

– 0.5 n log n + 2n + 7 ⇒

– n3 + 2n + 3n ⇒

• Eliminate coefficients
– 4n ⇒

– 0.5 n log n ⇒
– n log n2 ⇒

6/21/06 Algorithm Analysis 20

Properties of logs
• We will assume logs to base 2 unless specified

otherwise

• log AB = log A + log B

• Proof:
– A=2log

2
A and B=2log

2
B

– AB = 2log
2
A • 2log

2
B = 2log

2
A+log

2
B

– so log2AB = log2A + log2B

– note: log AB ≠ log A•log B

• log A/B = log A - log B
• log(AB) = B log A
• Any base k log is equivalent to base 2

6/21/06 Algorithm Analysis 21

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently large”,
f(n) will be “greater than or equal to” g(n)

f(n) = n3 + 2n2

g(n) = 100n2 + 1000

6/21/06 Algorithm Analysis 22

Definition of Order Notation
• Upper bound: T(n) = O(f(n)) Big-O

Exist constants c and n’ such that
T(n) ≤ c f(n) for all n ≥ n’

• Lower bound: T(n) = Ω(g(n)) Omega
Exist constants c and n’ such that

T(n) ≥ c g(n) for all n ≥ n’

• Tight bound: T(n) = θ(f(n)) Theta
When both hold:

T(n) = O(f(n))
T(n) = Ω(f(n))

6/21/06 Algorithm Analysis 23

Order Notation: Definition
O(f(n)) : a set or class of functions

g(n) ∈ O(f(n)) iff there exist consts c and n0
such that:

g(n) ≤ c f(n) for all n ≥ n0

Example: g(n) =1000n vs. f(n) = n2

 Is g(n) ∈ O(f(n)) ?
Pick: n0 = 1000, c = 1

1000n ≤ 1 * n2 for all n ≥ 1000

So g(n) ∈ O(f(n))

g(n)

c f(n)

n0

n

6/21/06 Algorithm Analysis 24

Notation Notes
Note: Sometimes, you’ll see the notation:

 g(n) = O(f(n)).

This is equivalent to:
g(n) ∈ O(f(n)).

However: The notation

O(f(n)) = g(n) is meaningless!

(in other words big-O is not symmetric)

5

6/21/06 Algorithm Analysis 25

Order Notation: Example

100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19

So f(n) ∈ O(g(n))
6/21/06 Algorithm Analysis 26

Meet the Family
• O(f(n)) is the set of all functions

asymptotically less than or equal to f(n)
– o(f(n)) is the set of all functions asymptotically

strictly less than f(n)

• Ω(f(n)) is the set of all functions
asymptotically greater than or equal to f(n)
– ω(f(n)) is the set of all functions asymptotically

strictly greater than f(n)

• θ(f(n)) is the set of all functions
asymptotically equal to f(n)

6/21/06 Algorithm Analysis 27

Meet the Family, Formally

• g(n) ∈ O(f(n)) iff
There exist c and n0 such that g(n) ≤ c f(n) for all n ≥ n0

– g(n) ∈ o(f(n)) iff
There exists a n0 such that g(n) < c f(n) for all c and n ≥ n0

• g(n) ∈ Ω(f(n)) iff
There exist c and n0 such that g(n) ≥ c f(n) for all n ≥ n0

– g(n) ∈ ω(f(n)) iff
There exists a n0 such that g(n) > c f(n) for all c and n ≥ n0

• g(n) ∈ θ(f(n)) iff
g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n))

Equivalent to: limn→∞ g(n)/f(n) = 0

Equivalent to: limn→∞ g(n)/f(n) = ∞

6/21/06 Algorithm Analysis 28

Big-Omega et al. Intuitively

>ω
<o

=θ

≥Ω

≤O

Mathematics RelationAsymptotic Notation

6/21/06 Algorithm Analysis 29

Pros and Cons of Asymptotic
Analysis

6/21/06 Algorithm Analysis 30

Kinds of Analysis

• Running time may depend on actual data
input, not just length of input

• Distinguish
– worst case

• your worst enemy is choosing input

– best case
– average case

• assumes some probabilistic distribution of inputs

– amortized
• average time over many operations

6

6/21/06 Algorithm Analysis 31

Types of Analysis

Two orthogonal axes:

– bound flavor
• upper bound (O, o)
• lower bound (Ω, ω)
• asymptotically tight (θ)

– analysis case
• worst case (adversary)

• average case

• best case
• “amortized”

6/21/06 Algorithm Analysis 32

Algorithm Analysis Examples
• Consider the following program segment:

x:= 0;

for i = 1 to N do

for j = 1 to N do

 x := x + 1;

• What is the value of x at the end?

6/21/06 Algorithm Analysis 33

Analyzing the Loop

• Total number of times x is incremented is
executed =

• Congratulations - You’ve just analyzed your
first program!
– Running time of the program is proportional to

N(N+1)/2 for all N
– Big-O ??

∑
=

+
==+++

N

1i 2

1)N(N
i...321

6/21/06 Algorithm Analysis 34

Which Function Grows Faster?

n3 + 2n2 100n2 + 1000vs.

6/21/06 Algorithm Analysis 35

Which Function Grows Faster?

n0.1 log nvs.

6/21/06 Algorithm Analysis 36

Which Function Grows Faster?

5n5 n!vs.

7

6/21/06 Algorithm Analysis 37

Nested Loops

for i = 1 to n do
 for j = 1 to n do
 sum = sum + 1

6/21/06 Algorithm Analysis 38

Nested Loops
for i = 1 to n do
 for j = 1 to n do
 if (cond) {

do_stuff(sum)
} else {

for k = 1 to n*n
sum += 1

6/21/06 Algorithm Analysis 39

16n3log8(10n2) + 100n2 = O(n3logn)
• Eliminate low

order terms

• Eliminate
constant
coefficients

16n3log8(10n2) + 100n2

⇒ 16n3log8(10n2)

⇒ n3log8(10n2)

⇒ n3[log8(10) + log8(n2)]

⇒ n3log8(10) + n3log8(n2)

⇒ n3log8(n2)

⇒ 2n3log8(n)

⇒ n3log8(n)

⇒ n3log8(2)log(n)

⇒n3log(n)

