CSE 326: Data Structures

Asymptotic Analysis

Neva Cherniavsky
Summer 2006

Big-O Analysis

- Ignores "details"
- What are some details we should ignore?
- Speed of machine
- Programming language used
- Amount of memory
- Order of input
- Size of input (we'll talk about this in a second)
- Compiler

Algorithm Analysis

Asymptotic Analysis

One "detail" we won't ignore - problem size, \# elements

- Complexity as a function of input size n
$\mathrm{T}(n)=4 n+5$
$T(n)=0.5 n \log n-2 n+7$
$\mathrm{T}(n)=2^{n}+n^{3}+3 n$
- What happens as n grows?
- Given code, idea of where bottlenecks will be - without running and timing

6/21/06

Analysis of Algorithms

- Efficiency measure
- how long the program runs time complexity
- how much memory it uses space complexity
- Why analyze at all?
- Decide which one to implement before going to the trouble 5

Why Asymptotic Analysis?

- Most algorithms are fast for small n
- Time difference too small to be noticeable
- External things dominate (OS, disk I/O, ...)
- BUT n is often large in practice
- Databases, internet, graphics, ...
- Time difference really shows up as n grows!

6/21/06 Algorithm Analysis

Exercise

2	3	5	16	37	50	73	75	126

bool ArrayFind(int array[], int n, int key) \{ // Insert your algorithm here

\} Algorithm Analysis | What algorithm would you choose |
| :---: |
| to implement this code snippet? |

Linear Search Analysis

bool LinearArrayFind(int array[],
int n,
int key)
for (int i = 0; $i<n$; i++) \{
if(array[i] == key)
// Found it!
return true;
\}
return false
\}

6/21/06
Algorithm Analysis
11

Big-O: Common Names

Analyzing Code

Basic Java operations

Consecutive statements Conditionals Loops
Function calls Recursive functions

Constant time
Sum of times

Larger branch plus test
Sum of iterations
Cost of function body
Solve recurrence relation
Number of calls * work for each call
Analyze your code!

6/21/06
gorithm Analysis
\qquad \square

Binary Search Analysis

bool BinArrayFind(int array[], int low, int high, int key) \{
// The subarray is empty
if(low > high) return false;
// Search this subarray recursively
int mid $=($ high + low) $/ 2$;
if(key == array[mid]) \{
return true;
Worst case: $\log n$?
\} else if(key < array[mid]) \{
return BinArrayFind(array, low,
mid-1, key);
We'll analyze this later
\} else \{
return BinArrayFind(array, mid+1, high, key);
6) Algorithm Analysis

12

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?
2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

6/21/06
Algorithm Analysis
13

Linear Search vs Binary

Search

	Linear Search	Binary Search
Best Case	4 at $[0]$	4 at [mid]
Worst Case	$3 n+2$	$4 \log \mathrm{n}+4$

So ... which algorithm is better? What tradeoffs can you make?

Fast Computer vs. Smart

 Programmer (round 1)

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is $\mathrm{T}(n)=3 n+2 \in \mathrm{O}(n)$
- Binary search is $\mathrm{T}(n)=4 \log _{2} n+4 \in \mathrm{O}(\log n)$

Remember: the fastest algorithm has the slowest growing function for its runtime
6/21/06
Algorithm Analysis
18

Asymptotic Analysis

- Eliminate low order terms
$-4 n+5 \Rightarrow$
$-0.5 n \log n+2 n+7 \Rightarrow$
$-n^{3}+2^{n}+3 n \Rightarrow$
- Eliminate coefficients
$-4 n \Rightarrow$
$-0.5 n \log n \Rightarrow$
$-\mathrm{n} \log \mathrm{n}^{2} \Rightarrow$

6/21/06

Order Notation: Intuition
$\mathrm{f}(n)=n^{3}+2 n^{2}$
$\mathrm{g}(n)=100 n^{2}+1000$

Although not yet apparent, as n gets "sufficiently large",
$f(n)$ will be "greater than or equal to" $g(n)$
6/21/06 Algorithm Analysis

21

Definition of Order Notation

- Upper bound: $T(n)=O(f(n)) \quad$ Big-O

Exist constants c and n ' such that $T(n) \leq c f(n) \quad$ for all $n \geq n^{\prime}$

- Lower bound: $T(n)=\Omega(g(n)) \quad$ Omega Exist constants c and n ' such that $T(n) \geq c g(n) \quad$ for all $n \geq n^{\prime}$
- Tight bound: $T(n)=\theta(f(n))$ Theta When both hold:
$T(n)=O(f(n))$ $T(n)=\Omega(f(n))$

6/21/06

Properties of logs

- We will assume logs to base 2 unless specified otherwise
- $\log \mathrm{AB}=\log \mathrm{A}+\log \mathrm{B}$
- Proof:
$-\mathrm{A}=2^{\log _{2} \mathrm{~A}}$ and $\mathrm{B}=2^{\log _{2} \mathrm{~B}}$

- so $\log _{2} A B=\log _{2} A+\log _{2} B$
- note: $\log A B \neq \log A \cdot \log B$
- $\log A / B=\log A-\log B$
- $\log \left(A^{B}\right)=B \log A$
- Any base $k \log$ is equivalent to base 2

6/21/06 Algorithm Analysis
20

Order Notation: Definition

$\mathbf{O}(\mathrm{f}(\boldsymbol{n}))$: a set or class of functions
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n)) \quad$ iff there exist consts c and n_{0} such that:
$g(n) \leq c f(n)$ for all $n \geq n_{0}$
Example: $\mathrm{g}(n)=1000 n$ vs. $\mathrm{f}(n)=n^{2}$ Is $g(n) \in O(f(n))$?

Pick: $\mathrm{nO}=1000, \mathrm{c}=1$
$1000 n \leq 1 * n^{2} \quad$ for all $n \geq 1000$
So $g(n) \in \mathrm{O}(\mathrm{f}(n))$
6/21/06
Algorithm Analysis
23

Meet the Family, Formally

- $g(n) \in O(f(n))$ iff

There exist c and n_{0} such that $\mathrm{g}(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$

- $g(n) \in o(f(n))$ iff

There exists a n_{0} such that $\mathrm{g}(n)<c \mathrm{f}(n)$ for all c and $n \geq n_{0}$
Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=0$

- $g(n) \in \Omega(f(n))$ iff

There exist c and n_{0} such that $\mathrm{g}(n) \geq c \mathrm{f}(n)$ for all $n \geq n_{0}$ - $\mathrm{g}(n) \in \omega(\mathrm{f}(n))$ iff

There exists a n_{0} such that $\mathrm{g}(n)>c \mathrm{f}(n)$ for all c and $n \geq n_{0}$
Equivalent to: $\lim _{n \rightarrow \infty} \mathrm{~g}(n) / \mathrm{f}(n)=\infty$

- $g(n) \in \theta(f(n))$ iff
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ and $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$
6/21/06
Algorithm Analysis

Meet the Family

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $f(n)$
$-o(f(n))$ is the set of all functions asymptotically strictly less than $\mathrm{f}(n)$
- $\Omega(f(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$ $-\omega(f(n))$ is the set of all functions asymptotically strictly greater than $f(n)$
- $\theta(\mathrm{f}(n))$ is the set of all functions asymptotically equal to $f(n)$

6/21/06
Algorithm Analysis
26

Big-Omega et al. Intuitively

Asymptotic Notation	Mathematics Relation
O	\leq
Ω	\geq
θ	$=$
0	$>$
ω	

6/21/06
28

Kinds of Analysis

- Running time may depend on actual data input, not just length of input
- Distinguish
- worst case
- your worst enemy is choosing input
- best case
- average case
- assumes some probabilistic distribution of inputs
- amortized
- average time over many operations

Algorithm Analysis
30

Types of Analysis

Two orthogonal axes:

- bound flavor
- upper bound (O, o)
- lower bound (Ω, ω)
- asymptotically tight (θ)
- analysis case
- worst case (adversary)
- average case
- best case
- "amortized"

6/21/06

Analyzing the Loop

- Total number of times x is incremented is executed =

$$
1+2+3+\ldots=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- Congratulations - You've just analyzed your first program!
- Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N
- Big-O ??

6/21/06
Algorithm Analysis

Algorithm Analysis Examples

- Consider the following program segment:

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \text { do } \\
& \text { for } j=1 \text { to } N \text { do } \\
& \quad x:=x+1 ;
\end{aligned}
$$

- What is the value of x at the end?

Which Function Grows Faster?

$$
n^{3}+2 n^{2} \quad \text { vs. } 100 n^{2}+1000
$$

Which Function Grows Faster?

$5 n^{5}$

VS.
n!

Nested Loops		
$\begin{gathered} \text { for } i \\ \text { for } \\ s u \end{gathered}$		
${ }_{62106}$	${ }_{\text {Algritum manksis }}$	3

Nested LOOPS
for $i=1$ to n do
for $j=1$ to n do
if (cond) $\{$
do_stuff(sum)
$\}$ else $\{$
for $\mathbf{k}=1$ to $\mathbf{n} \star_{n}$
sum $+=1$

