
1

CSE 326: Data Structures

Priority Queues and Binary
Heaps

Neva Cherniavsky

Summer 2006

Administration
• Due tonight: Project 1

• Released today: Project 2, phase A

• Due Wednesday: Homework 1

• Released Wednesday: Homework 2

• Gary has office hours tomorrow

A New Problem…
• Application: Find the smallest (or highest

priority) item quickly
• Operating system needs to schedule jobs

according to priority
• Doctors in ER take patients according to

severity of injuries

Priority Queue ADT
• Security line at the airport ???
• Printer queues ???
• operations: insert, deleteMin

insert deleteMin

 6 2
 15 23
12 18
45 3 7

Priority Queue ADT
1. PQueue data : collection of data with priority

2. PQueue operations
– insert

– deleteMin

(also: create, destroy, is_empty)

3. PQueue property: for two elements in the
queue, x and y, if x has a lower priority value
than y, x will be deleted before y

Applications of the Priority Q

• Select print jobs in order of decreasing length

• Forward packets on network routers in order of
urgency

• Select most frequent symbols for compression

• Sort numbers, picking minimum first

• Anything greedy

2

Implementations of P Queue ADT

O(log N)O(log N)Binary heap

O(1)O(N)Sorted list (Array)

O(N)O(1)Unsorted list (Linked-List)

Don’t worryBinary Search Tree (BST)

O(1)O(N)Sorted list (Linked-List)

O(N)O(1)Unsorted list (Array)

deleteMininsert Tree Review

A

E

B

D F

C

G

IH

LJ MK N

root(T):

leaves(T):

children(B):

parent(H):

siblings(E):

ancestors(F):

descendents(G):

subtree(C):

Tree T

More Tree Terminology

A

E

B

D F

C

G

IH

LJ MK N

depth(T):

height(G):

degree(B):

branching factor(T):

Tree T

Some More Tree Terminology

JIH

GFED

CB

AT is binary if …

T is n-ary if …

T is complete if …

Tree T

How deep is a complete tree with n nodes?

Binary Heap Properties
1. Structure Property

2. Ordering Property

Heap Structure Property
• A binary heap is a complete binary tree.
Complete binary tree – binary tree that is completely

filled, with the possible exception of the bottom level,
which is filled left to right.

Examples:

3

Representing Complete
Binary Trees in an Array

GED

CB

A

J KH I

F

L

From node i:

left child:
right child:
parent:

7

1

2 3

4 5 6

98 10 11 12

131211109876543210

LKJIHGFEDCBA

implicit (array) implementation:

Why better than tree with
pointers?

Heap Order Property
Heap order property: For every non-root node

X, the value in the parent of X is less than (or
equal to) the value in X.

1530

8020

10

996040

8020

10

50 700

85

not a heap

Heap order property

• A heap provides limited ordering information

• Each path is sorted, but the subtrees are not
sorted relative to each other
– A binary heap is NOT a binary search tree

2

4 6

7 5

-1

0 1

0

1

2 6

8 4 7
These are all valid binary heaps (minimum)

Heap Operations
• FindMin: Easy!

– Return root value A[1]

– Run time = ?

• DeleteMin:

– Delete (and return) value at
root node

• Insert(val):
– Insert value into heap

2

34

9857

106911

DeleteMin

34

9857

106911

• Delete (and return) value at
root node

4

Maintain the Structure
Property

• We now have a “Hole” at the
root
– Need to fill the hole with

another value

• When we get done, the tree
will have one less node and
must still be complete

34

9857

106911

34

9857

106911

Maintain the Heap Property
• The last value has lost its

node
– we need to find a new place

for it

• We can do a simple insertion
sort operation to find the
correct place for it in the tree 34

9857

10

6911

DeleteMin: Percolate Down

• Keep comparing with children A[2i] and A[2i + 1]
• Copy smaller child up and go down one level
• Done if both children are ≥ item or reached a leaf node
• What is the run time?

34

9857

10

6911

4

9857

10

6911

3

84

91057

6911

3
?

?

DeleteMin: Run Time Analysis
• Run time is O(depth of heap)

• A heap is a complete binary tree

• Depth of a complete binary tree of N nodes?
– height = log2(N) - 1

• Run time of DeleteMin is O(log N)

Insert
• Add a value to the tree

• Structure and heap order
properties must still be
correct when we are done

84

91057

6911

3

2

Maintain the Structure
Property

• The only valid place for a
new node in a complete tree
is at the end of the array

• We need to decide on the
correct value for the new
node, and adjust the heap
accordingly 84

91057

6911

3

2

5

Maintain the Heap Property

• The new value goes where?

• We can do a simple insertion
sort operation to find the correct
place for it in the tree

2

84

91057

6911

3

Insert: Percolate Up

2

84

91057

6911

3

• Start at last node and keep comparing with parent A[i/2]
• If parent larger, copy parent down and go up one level
• Done if parent ≤ item or reached top node A[1]
• Run time?

?

2
5

84

9107

6911

3

?

2

5

8

91047

6911

3?

Insert: Done

5

83

91047

6911

2

• Run time?

876543210

Insert: 16, 32, 4, 69, 105, 43, 2

Other Priority Queue
Operations

• decreaseKey
– given a pointer to an object in the queue, reduce its priority value

Solution: change priority and ____________________________

• increaseKey
– given a pointer to an object in the queue, increase its priority value

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?

Other Heap Operations
decreaseKey(objPtr, amount): raise the priority of a

object, percolate up

increaseKey(objPtr, amount): lower the priority of a
object, percolate down

remove(objPtr): remove a object, move to top, them delete.
 1) decreaseKey(objPtr, ∞)

 2) deleteMin()

Worst case Running time for all of these:

FindMax?

ExpandHeap – when heap fills, copy into new space.

6

Build Heap

BuildHeap {
for i = N/2 to 1 by –1 PercDown(i,A[i])
}

3

105

9849

672

11N=11

4

105

9839

672

11
1

4

32

5 6 7

11
109

8

Build Heap

4

105

9832

679

11

4

85

91032

679

11

Build Heap

4

82

91035

679

11

11

83

91045

679

2

Analysis of Build Heap
• Assume N = 2K –1

– Level 1: k -1 steps for 1 item
– Level 2: k - 2 steps of 2 items
– Level 3: k - 3 steps for 4 items
– Level i : k - i steps for 2i-1 items

O(N)

1-k2)2 ik (Steps Total k1i
1k

1i

=

−=−= −
−

=
∑

Binary Min Heaps (summary)
• insert: percolate up. O(log N) time.

• deleteMin: percolate down. O(log N) time.

• Next time: Even more priority queues??

