

Administration

- Released today: Project 2, phase B
- Due today: Homework 1
- Released today: Homework 2
- I have office hours tomorrow

Buildheap pseudocode

```
private void buildHeap() {
    for ( int i = currentSize/2; i > 0; i-- )
        percolateDown( i );
```

\}
runtime:
6/28/2006
Binomial Queues
4

Facts about Heaps

Observations:

- finding a child/parent index is a multiply/divide by two
- operations jump widely through the heap
- each percolate step looks at only two new nodes
- inserts are at least as common as deleteMins

Realities:

- division/multiplication by powers of two are equally fast
- looking at only two new pieces of data: bad for cache!
- with huge data sets, disk accesses dominate

Operations on d-Heap

- Insert : runtime =
- deleteMin: runtime =

Does this help insert or deleteMin more?
6/28/2006
Binomial Queues 11

A Solution: d-Heaps

Each node has d children

- Still representable by array
- Good choices for d :
, (choose a power of two for efficiency)

, fit one set of children on a
memory page/disk block

6/28/2006
Binomial Queues
10

One More Operation

- Merge two heaps. Ideas?

6/28/2006
Binomial Queues
12

New Operation: Merge

Given two heaps, merge them into one heap
, first attempt: insert each element of the smaller heap into the larger. runtime:
, second attempt: concatenate binary heaps' arrays and run buildHeap. runtime:

Merging heaps

- Binary Heap is a special purpose hot rod
, FindMin, DeleteMin and Insert only
, does not support fast merges of two heaps
- For some applications, the items arrive in prioritized clumps, rather than individually
- Is there somewhere in the heap design that we can give up a little performance so that we can gain faster merge capability?

6/28/2006

Binomial Queues

- Binomial Queues are designed to be merged quickly with one another
- Using pointer-based design we can merge large numbers of nodes at once by simply pruning and grafting tree structures
- More overhead than Binary Heap, but the flexibility is needed for improved merging speed

Binomial Queues

- Binomial queues give up simplicity in order to provide $\mathrm{O}(\log \mathrm{N})$ merge performance
- A binomial queue is a collection (or forest) of heap-ordered trees
, Not just one tree, but a collection of trees , each tree has a defined structure and capacity , each tree has the familiar heap-order property

6/28/2006

Worst Case Run Times

6/28/2006 Binomial Queues 16

Binomial Queue with 5 Trees

Structure Property

- Each tree contains two copies of the previous tree
, the second copy is attached at the root of the first copy
- The number of nodes in a tree of depth d is exactly 2^{d}

depth	2	1	0
number of elements	$2^{2}=4$	$2^{1}=2$	$2^{0}=1$
Binomial Queues			

Numbers of nodes

- Any number of entries in the binomial queue can be stored in a forest of binomial trees
- Each tree holds the number of nodes appropriate to its depth, ie 2^{d} nodes
- So the structure of a forest of binomial trees can be characterized with a single binary number

$$
100_{2} \rightarrow 1 \cdot 2^{2}+0 \cdot 2^{1}+0 \cdot 2^{0}=4 \text { nodes }
$$

6/28/2006

Example 1.
Merge BQ. 1 and BQ. 2

Easy Case.
There are no comparisons and
there is no restructuring

Powers of 2

- Any number N can be represented in base 2
, A base 2 value identifies the powers of 2 that are to be included

6/28/2006

Example 3.
Merge BQ. 1 and BQ. 2
Part 1 - Form the carry.

Merge Algorithm

- Just like binary addition algorithm
- Assume trees X_{0}, \ldots, X_{n} and Y_{0}, \ldots, Y_{n} are binomial queues
, X_{i} and Y_{i} are of type B_{i} or null
$C_{0}:=$ null; //initial carry is null//
for $i=0$ to n do
combine X_{i}, Y_{i}, and C_{i} to form Z_{i} and new C_{i+1}
$Z_{n+1}:=C_{n+1}$

Exercise

O(log N) time to Merge

- For N keys there are at most $\left\lceil\log _{2} \mathrm{~N}\right\rceil$ trees in a binomial forest.
- Each merge operation only looks at the root of each tree.
- Total time to merge is $\mathrm{O}(\log \mathrm{N})$.

6/28/2006

Insert

- Create a single node queue B_{0} with the new item and merge with existing queue
- $\mathrm{O}(\log \mathrm{N})$ time

DeleteMin

1. Assume we have a binomial forest X_{0}, \ldots, X_{m}
2. Find tree X_{k} with the smallest root
3. Remove X_{k} from the queue
4. Remove root of X_{k} (return this value) , This yields a binomial forest $Y_{0}, Y_{1}, \ldots, Y_{k-1}$.
5. Merge this new queue with remainder of the original (from step 3)

- Total time $=\mathrm{O}(\log \mathrm{N})$

6/28/2006

Other Priority Queues

- Leftist Heaps
, $O(\log N)$ time for insert, deletemin, merge
- Skew Heaps
, O(log N) amortized time for insert, deletemin, merge
- Calendar Queues
, $O(1)$ average time for insert and deletemin
, Assuming insertions are "random"
6/28/2006
Binomial Queues
${ }^{38}$

Exercise Solution

