
1

CSE 326: Data Structures

Binomial Queues

Neva Cherniavsky

Summer 2006

6/28/2006 Binomial Queues 2

Administration

• Released today: Project 2, phase B

• Due today: Homework 1

• Released today: Homework 2

• I have office hours tomorrow

6/28/2006 Binomial Queues 3

BuildHeap: Floyd’s Method

5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

27184

96103

115

12

6/28/2006 Binomial Queues 4

Buildheap pseudocode

private void buildHeap() {
for (int i = currentSize/2; i > 0; i--)

percolateDown(i);
}

runtime:

6/28/2006 Binomial Queues 5

BuildHeap: Floyd’s Method

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

6/28/2006 Binomial Queues 6

Finally…

11710812

9654

23

1

runtime:

2

6/28/2006 Binomial Queues 7

Facts about Heaps
Observations:
• finding a child/parent index is a multiply/divide by two

• operations jump widely through the heap
• each percolate step looks at only two new nodes

• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast
• looking at only two new pieces of data: bad for cache!

• with huge data sets, disk accesses dominate

6/28/2006 Binomial Queues 8

CPU

Cache

Memory

Disk

Cycles to access:

6/28/2006 Binomial Queues 9

Representing Complete
Binary Trees in an Array

GED

CB

A

J KH I

F

L

From node i:

left child:
right child:
parent:

7

1

2 3

4 5 6

98 10 11 12

131211109876543210

LKJIHGFEDCBA

implicit (array) implementation:

6/28/2006 Binomial Queues 10

4

9654

23

1

8 1012

7

11

A Solution: d-Heaps
• Each node has d children

• Still representable by
array

• Good choices for d:
› (choose a power of two for

efficiency)
› fit one set of children in a

cache line
› fit one set of children on a

memory page/disk block

3 7 2 8 5 1211 10 6 9112

6/28/2006 Binomial Queues 11

Operations on d-Heap

• Insert : runtime =

• deleteMin: runtime =

Does this help insert or deleteMin more?
6/28/2006 Binomial Queues 12

One More Operation

• Merge two heaps. Ideas?

3

6/28/2006 Binomial Queues 13

New Operation: Merge

Given two heaps, merge them into one heap
› first attempt: insert each element of the smaller

heap into the larger.
runtime:

› second attempt: concatenate binary heaps’ arrays
and run buildHeap.
runtime:

6/28/2006 Binomial Queues 14

Merging heaps

• Binary Heap is a special purpose hot rod
› FindMin, DeleteMin and Insert only

› does not support fast merges of two heaps

• For some applications, the items arrive in
prioritized clumps, rather than individually

• Is there somewhere in the heap design that
we can give up a little performance so that we
can gain faster merge capability?

6/28/2006 Binomial Queues 15

Binomial Queues

• Binomial Queues are designed to be merged
quickly with one another

• Using pointer-based design we can merge
large numbers of nodes at once by simply
pruning and grafting tree structures

• More overhead than Binary Heap, but the
flexibility is needed for improved merging
speed

6/28/2006 Binomial Queues 16

Worst Case Run Times

Insert

FindMin

DeleteMin

Merge

Θ(log N)

Θ(1)

Θ(N)

Θ(log N)

Binary Heap

Θ(log N)

O(log N)

O(log N)

Θ(log N)

Binomial Queue

6/28/2006 Binomial Queues 17

Binomial Queues

• Binomial queues give up simplicity in order to
provide O(log N) merge performance

• A binomial queue is a collection (or forest) of
heap-ordered trees
› Not just one tree, but a collection of trees
› each tree has a defined structure and capacity
› each tree has the familiar heap-order property

6/28/2006 Binomial Queues 18

Binomial Queue with 5 Trees

B0B1B2B3B4

depth

number of elements

4

24 = 16

3

23 = 8

2

22 = 4

1

21 = 2

0

20 = 1

4

6/28/2006 Binomial Queues 19

Structure Property

• Each tree contains two
copies of the previous tree
› the second copy is attached at

the root of the first copy

• The number of nodes in a
tree of depth d is exactly 2d

B0B1B2

depth

number of elements

2

22 = 4

1

21 = 2

0

20 = 1

6/28/2006 Binomial Queues 20

Powers of 2

• Any number N can be represented in
base 2
› A base 2 value identifies the powers of 2

that are to be included

20

=

1 1
0

21

=

2 1
0

22

=

4 1
0

23

=
8
10

Hex16 Decimal10

1 1 3 3

1 0 0 4 4

1 0 1 5 5

6/28/2006 Binomial Queues 21

Numbers of nodes

• Any number of entries in the binomial
queue can be stored in a forest of
binomial trees

• Each tree holds the number of nodes
appropriate to its depth, ie 2d nodes

• So the structure of a forest of binomial
trees can be characterized with a single
binary number
› 1002 → 1·22 + 0·21 + 0·20 = 4 nodes

Structure Examples

4

8

N=210=102 21 = 2

94

8

21 = 2 20 = 1

94

85

7

22 = 4 21 = 2 20 = 1

4

85

7

22 = 4

N=310=112

N=410=1002

N=510=1012

22 = 4

22 = 4

20 = 1 20 = 121 = 2

6/28/2006 Binomial Queues 23

What is a merge?

• There is a direct correlation between
› the number of nodes in the tree

› the representation of that number in base 2
› and the actual structure of the tree

• When we merge two queues, the number of
nodes in the new queue is the sum of N1+N2

• We can use that fact to help see how fast
merges can be accomplished

4

8

N=210=102 21 = 2

94

8

21 = 2 20 = 1N=310=112

22 = 4

22 = 4

20 = 1

N=110=12 21 = 222 = 4 20 = 1

9

Example 1.

Merge BQ.1 and
BQ.2

Easy Case.

There are no
comparisons and
there is no
restructuring.

BQ.1

+ BQ.2

= BQ.3

5

4

6

N=210=102 21 = 2

21 = 2 20 = 1N=410=1002

22 = 4

22 = 4

20 = 1

N=210=102 21 = 222 = 4 20 = 1

Example 2.

Merge BQ.1 and BQ.2

This is an add with a
carry out.

It is accomplished with
one comparison and
one pointer change:
O(1)

BQ.1

+ BQ.2

= BQ.3

1

3

1

34

6

4

6

N=310=112 21 = 2

21 = 2 20 = 1N=210=102

22 = 4

22 = 4

20 = 1

N=310=112 21 = 222 = 4 20 = 1
Example 3.

Merge BQ.1 and BQ.2

Part 1 - Form the
carry.

BQ.1

+ BQ.2

= carry

1

3

7

8

7

8

4

6

N=310=112 21 = 2

21 = 2 20 = 1N=610=1102

22 = 4

22 = 4

20 = 1

N=310=112 21 = 222 = 4 20 = 1

Example 3.

Part 2 - Add the existing
values and the carry.

+ BQ.1

+ BQ.2

= BQ.3

1

3

7

8

7

8

21 = 2 20 = 1N=210=102 22 = 4

carry

7

8

1

34

6

6/28/2006 Binomial Queues 28

Merge Algorithm

• Just like binary addition algorithm
• Assume trees X0,…,Xn and Y0,…,Yn are

binomial queues
› Xi and Yi are of type Bi or null

C0 := null; //initial carry is null//
for i = 0 to n do
 combine Xi,Yi, and Ci to form Zi and new Ci+1

Zn+1 := Cn+1

6/28/2006 Binomial Queues 29

Exercise

94

8

21 = 2 20 = 1

12

107

12

22 = 4 21 = 2 20 = 1N=310=112 N=510=101222 = 4

13

15

6/28/2006 Binomial Queues 30

O(log N) time to Merge

• For N keys there are at most log2 N
trees in a binomial forest.

• Each merge operation only looks at the
root of each tree.

• Total time to merge is O(log N).

6

6/28/2006 Binomial Queues 31

Insert

• Create a single node queue B0 with
the new item and merge with
existing queue

• O(log N) time

6/28/2006 Binomial Queues 32

DeleteMin

1. Assume we have a binomial forest X0,…,Xm

2. Find tree Xk with the smallest root

3. Remove Xk from the queue

4. Remove root of Xk (return this value)
› This yields a binomial forest Y0, Y1, …,Yk-1.

5. Merge this new queue with remainder of the
original (from step 3)

• Total time = O(log N)

6/28/2006 Binomial Queues 33

Implementation
• Binomial forest as an array of multiway trees

› FirstChild, Sibling pointers
› Subtrees in decreasing sizes

0 1 2 3 4 5 6 7

5
2

9

1

107

12

4

813

15

5
2

9

1

4710

12 138

15

6/28/2006 Binomial Queues 34

DeleteMin Example

1 Return this

0 1 2 3 4 5 6 7

5 2

9

1

4710

12 138

15

0 1 2 3 4 5 6 7

5 2

9 4710

12 138

15

6/28/2006 Binomial Queues 35

0 1 2 3 4 5 6 7

5 2

9

0 1 2 3 4 5 6 7

5 2

9

0 1 2 3 4 5 6 7
New forest

Old forest

4710

12 138

15

4710

12 138

15

6/28/2006 Binomial Queues 36

0 1 2 3 4 5 6 7

5 2

9

0 1 2 3 4 5 6 7

Merge
5

100 1 2 3 4 5 6 7

4710

12 138

15

2

9 7

12

4

138

15

7

6/28/2006 Binomial Queues 37

Why Binomial?

B0B1B2B3B4

tree depth d

nodes at depth k

4

1, 4, 6, 4, 1

3

1, 3, 3, 1

2

1, 2, 1

1

1, 1

0

1

!)!(

!

kkd

d
k

d

−
=









6/28/2006 Binomial Queues 38

Other Priority Queues

• Leftist Heaps
› O(log N) time for insert, deletemin, merge

• Skew Heaps
› O(log N) amortized time for insert,

deletemin, merge

• Calendar Queues
› O(1) average time for insert and deletemin
› Assuming insertions are “random”

6/28/2006 Binomial Queues 39

Exercise Solution

94

8

12

107

12

13

15
+

1

9

2

107

12

4

813

15

