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CSE 326: Data Structures

Binary Search Trees

Neva Cherniavsky

Summer 2006

Tree Calculations
Recall: height is max

number of edges from
root to a leaf

Find the height of the
tree...
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Tree Calculations Example
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How high is this tree?

More Recursive Tree Calculations:
Tree Traversals

A traversal is an order for
visiting all the nodes of a tree

Three types:
• Pre-order:  Root, left subtree, right subtree

• In-order:  Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root
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(an expression tree)

Traversals

void traverse(BNode t){
  if (t != NULL)
   traverse (t.left);

print t.element;
 traverse (t.right);

  }
}

Binary Trees
• Binary tree is

› a root
› left subtree (maybe

empty)
› right subtree (maybe

empty)

• Representation:
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Binary Tree: Representation
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Binary Tree: Special Cases
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Binary Tree: Some Numbers!
For binary tree of height h:

› max # of leaves:

› max # of nodes:

› min # of leaves:

› min # of nodes:

ADTs Seen So Far
• Stack

› Push

› Pop

• Queue
› Enqueue

› Dequeue

• Priority Queue

› Insert

› DeleteMin

What about decreaseKey?

The Dictionary ADT

• Data:
› a set of

(key, value)
pairs

• Operations:
› Insert (key,

value)

› Find (key)

› Remove (key) The Dictionary ADT is sometimes
called the “Map ADT”

• nchernia
Neva Cherniavsky
OH: Th 12:00
CSE 210

• gyngve
Gary Yngve
OH: T: 9:30
CSE 216

• cary
Matt Cary,
OH: Th 11:00
CSE 002

insert(nchernia, ….)

find(gyngve)
• gynvge
    Gary Yngve, …

A Modest Few Uses

• Sets

• Dictionaries

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!
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Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind

Binary Search Tree Data
Structure
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• Structural property
› each node has ≤ 2 children
› result:

• storage is small
• operations are simple
• average depth is small

• Order property
› all keys in left subtree smaller

than root’s key
› all keys in right subtree larger

 than root’s key
› result: easy to find any given key

• What must I know about what I store?

Example and Counter-Example
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Find in BST, Recursive
Node Find(Object key,
            Node root) {
  if (root == NULL)
    return NULL;

  if (key < root.key)
    return Find(key,
                root.left);
  else if (key > root.key)
    return Find(key,
                root.right);
  else
    return root;
}
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Runtime:

Find in BST, Iterative
Node Find(Object key,
            Node root) {

  while (root != NULL &&
         root.key != key) {
    if (key < root.key)
      root = root.left;
    else
      root = root.right;
  }

  return root;
}
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Runtime:

Insert in BST
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Runtime:

Insert(13)
Insert(8)
Insert(31)

Insertions happen only 
at the leaves – easy!



4

BuildTree for BST
• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted

into an initially empty BST.
Runtime depends on the order!

› in given order

› in reverse order

› median first, then left median, right median, etc.

Bonus: FindMin/FindMax

• Find minimum

• Find maximum
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Delete Operation

• Delete is a bit trickier…Why?

• Suppose you want to delete 10

• Strategy:
› Find 10

› Delete the node containing 10

• Problem: When you delete a node,
what do you replace it by?
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Delete Operation
• Problem: When you delete a node,

what do you replace it by?
•  Solution:

› If it has no children, by NULL
› If it has 1 child, by that child
› If it has 2 children, by the node with

the smallest value in its right subtree
(the successor of the node)
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Delete “5” - No children

Find 5 node

Then Free
the 5 node and 
NULL the 
pointer to it
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Delete “24” - One child

Find 24 node

Then Free
the 24 node and 
replace the 
pointer to it with
a pointer to its
child
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Delete “10” - two children
Find 10,
Copy the smallest
value in
right subtree
into the node

Then recursively
Delete node with 
smallest value
in right subtree
Note:  it does not
have two children
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Delete “11” - One child

Remember
11 node

Then Free
the 11 node and 
replace the 
pointer to it with
a pointer to its
child
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Runtimes

• Find?  Insert?  Delete?
• What is the average height of a BST?

• What is the maximum height?

• What happened when we insert nodes in
sorted order?

Balanced BST
Observation

• BST: the shallower the better!

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is O(log n)        – strong enough!

2. is easy to maintain                  – not too strong!

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height
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The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property:  –1  ≤ balance(x) ≤ 1,   for every
node x

• Ensures small depth
› Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. O(2h)) nodes

• Easy to maintain
› Using single and double rotations

The AVL Tree Data Structure
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Structural properties

1. Binary tree property

2. Balance property:
balance of every node
is between -1 and 1

Result:

Worst case depth is
O(log n)

Ordering property

› Same as for BST 15


