
1

CSE 326: Data Structures

Binary Search Trees

Neva Cherniavsky

Summer 2006

Tree Calculations
Recall: height is max

number of edges from
root to a leaf

Find the height of the
tree...

t

runtime:

Tree Calculations Example
A

E

B

D F

C

G

IH

KJ L

M

L

N

How high is this tree?

More Recursive Tree Calculations:
Tree Traversals

A traversal is an order for
visiting all the nodes of a tree

Three types:
• Pre-order: Root, left subtree, right subtree

• In-order: Left subtree, root, right subtree

• Post-order: Left subtree, right subtree, root

+

*

2 4

5

(an expression tree)

Traversals

void traverse(BNode t){
 if (t != NULL)
 traverse (t.left);

print t.element;
 traverse (t.right);

 }
}

Binary Trees
• Binary tree is

› a root
› left subtree (maybe

empty)
› right subtree (maybe

empty)

• Representation:

A

B

D E

C

F

HG

JI

Data

right
pointer

left
pointer

2

Binary Tree: Representation
A

right
pointer

left
pointer A

B

D E

C

F

B
right

pointer
left

pointer

C
right

pointer
left

pointer

D
right

pointer
left

pointer

E
right

pointer
left

pointer

F
right

pointer
left

pointer

Binary Tree: Special Cases

A

B

D E

C

GF

IH

A

B

D E

C

F

A

B

D E

C

GF

Full Tree

Complete Tree Perfect Tree

Binary Tree: Some Numbers!
For binary tree of height h:

› max # of leaves:

› max # of nodes:

› min # of leaves:

› min # of nodes:

ADTs Seen So Far
• Stack

› Push

› Pop

• Queue
› Enqueue

› Dequeue

• Priority Queue

› Insert

› DeleteMin

What about decreaseKey?

The Dictionary ADT

• Data:
› a set of

(key, value)
pairs

• Operations:
› Insert (key,

value)

› Find (key)

› Remove (key) The Dictionary ADT is sometimes
called the “Map ADT”

• nchernia
Neva Cherniavsky
OH: Th 12:00
CSE 210

• gyngve
Gary Yngve
OH: T: 9:30
CSE 216

• cary
Matt Cary,
OH: Th 11:00
CSE 002

insert(nchernia, ….)

find(gyngve)
• gynvge
 Gary Yngve, …

A Modest Few Uses

• Sets

• Dictionaries

• Networks : Router tables

• Operating systems : Page tables

• Compilers : Symbol tables

Probably the most widely used ADT!

3

Implementations

• Unsorted Linked-list

• Unsorted array

• Sorted array

insert deletefind

Binary Search Tree Data
Structure

4

121062

115

8

14

13

7 9

• Structural property
› each node has ≤ 2 children
› result:

• storage is small
• operations are simple
• average depth is small

• Order property
› all keys in left subtree smaller

than root’s key
› all keys in right subtree larger

 than root’s key
› result: easy to find any given key

• What must I know about what I store?

Example and Counter-Example

3

1171

84

5

4

181062

115

8

20

21BINARY SEARCH TREE NOT A
BINARY SEARCH TREE

7

15

Find in BST, Recursive
Node Find(Object key,
 Node root) {
 if (root == NULL)
 return NULL;

 if (key < root.key)
 return Find(key,
 root.left);
 else if (key > root.key)
 return Find(key,
 root.right);
 else
 return root;
}

2092

155

10

307 17

Runtime:

Find in BST, Iterative
Node Find(Object key,
 Node root) {

 while (root != NULL &&
 root.key != key) {
 if (key < root.key)
 root = root.left;
 else
 root = root.right;
 }

 return root;
}

2092

155

10

307 17

Runtime:

Insert in BST

2092

155

10

307 17

Runtime:

Insert(13)
Insert(8)
Insert(31)

Insertions happen only
at the leaves – easy!

4

BuildTree for BST
• Suppose keys 1, 2, 3, 4, 5, 6, 7, 8, 9 are inserted

into an initially empty BST.
Runtime depends on the order!

› in given order

› in reverse order

› median first, then left median, right median, etc.

Bonus: FindMin/FindMax

• Find minimum

• Find maximum

2092

155

10

307 17

Delete Operation

• Delete is a bit trickier…Why?

• Suppose you want to delete 10

• Strategy:
› Find 10

› Delete the node containing 10

• Problem: When you delete a node,
what do you replace it by?

94

10 97

5 24

11

17

Delete Operation
• Problem: When you delete a node,

what do you replace it by?
• Solution:

› If it has no children, by NULL
› If it has 1 child, by that child
› If it has 2 children, by the node with

the smallest value in its right subtree
(the successor of the node)

94

10 97

5 24

11

17

Delete “5” - No children

Find 5 node

Then Free
the 5 node and
NULL the
pointer to it

94

10 97

5 24

11

17

94

10 97

5 24

11

17

Delete “24” - One child

Find 24 node

Then Free
the 24 node and
replace the
pointer to it with
a pointer to its
child

94

10 97

5 24

11

17

94

10 97

5 24

11

17

5

Delete “10” - two children
Find 10,
Copy the smallest
value in
right subtree
into the node

Then recursively
Delete node with
smallest value
in right subtree
Note: it does not
have two children

94

10 97

5 24

11

17

94

11 97

5 24

11

17

Delete “11” - One child

Remember
11 node

Then Free
the 11 node and
replace the
pointer to it with
a pointer to its
child

94

11 97

5 24

11

17

94

11 97

5 24

11

17

Runtimes

• Find? Insert? Delete?
• What is the average height of a BST?

• What is the maximum height?

• What happened when we insert nodes in
sorted order?

Balanced BST
Observation

• BST: the shallower the better!

• Simple cases such as insert(1, 2, 3, ..., n)
lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is O(log n) – strong enough!

2. is easy to maintain – not too strong!

Potential Balance Conditions
1. Left and right subtrees of the root

have equal number of nodes

2. Left and right subtrees of the root
have equal height

Potential Balance Conditions
3. Left and right subtrees of every node

have equal number of nodes

4. Left and right subtrees of every node
have equal height

6

The AVL Balance Condition
Left and right subtrees of every node
have equal heights differing by at most 1

Define: balance(x) = height(x.left) – height(x.right)

AVL property: –1 ≤ balance(x) ≤ 1, for every
node x

• Ensures small depth
› Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. O(2h)) nodes

• Easy to maintain
› Using single and double rotations

The AVL Tree Data Structure

4

121062

115

8

14137 9

Structural properties

1. Binary tree property

2. Balance property:
balance of every node
is between -1 and 1

Result:

Worst case depth is
O(log n)

Ordering property

› Same as for BST 15

