

More Recursive Tree Calculations:
 Tree Traversals

A traversal is an order for visiting all the nodes of a tree

Three types:

- Pre-order: Root, left subtree, right subtree
- In-order: Left subtree, root, right subtree
- Post-order: Left subtree, right subtree, root

Binary Trees

- Binary tree is
, a root
) left subtree (maybe empty)
, right subtree (maybe empty)

- Representation

Binary Tree: Some Numbers!

For binary tree of height h :
, max \# of leaves:
, max \# of nodes:
, min \# of leaves:
) min \# of nodes:

ADTs Seen So Far

- Stack
, Push
, Pop
- Priority Queue
, Insert
, DeleteMin
What about decreaseKey?
- Queue
, Enqueue
, Dequeue

A Modest Few Uses

- Sets
- Dictionaries
- Networks : Router tables
- Operating systems : Page tables
- Compilers : Symbol tables

Probably the most widely used ADT!

Implementations	
- Unsorted Linked-list	
- Unsorted array	
- Sorted array	

Find in BST, Recursive

Find in BST, Iterative

BuildTree for BST

- Suppose keys $1,2,3,4,5,6,7,8,9$ are inserted into an initially empty BST.

Runtime depends on the order!
, in given order
, in reverse order
median first, then left median, right median, etc.

Bonus: FindMin/FindMax

- Find minimum
- Find maximum

Delete Operation

- Problem: When you delete a node, what do you replace it by?
- Solution:
, If it has no children, by NULL
) If it has 1 child, by that child
, If it has 2 children, by the node with the smallest value in its right subtree (the successor of the node)

Runtimes

- Find? Insert? Delete?
- What is the average height of a BST?
- What is the maximum height?
- What happened when we insert nodes in sorted order?

Observation

- BST: the shallower the better!
- Simple cases such as insert($1,2,3, \ldots, n$) lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is $O(\log n) \quad-$ strong enough!
2. is easy to maintain - not too strong!

Potential Balance Conditions

1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height

Potential Balance Conditions

3. Left and right subtrees of every node have equal number of nodes
4. Left and right subtrees of every node have equal height

The AVL Balance Condition Left and right subtrees of every node have equal heights differing by at most 1

Define: balance $(x)=$ height $(x$. left $)-$ height $(x$. right $)$
AVL property: $-1 \leq$ balance $(x) \leq 1$, for every node x

- Ensures small depth
, Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $\mathrm{O}\left(2^{h}\right)$) nodes
- Easy to maintain
, Using single and double rotations

The AVL Tree Data Structure

 Structural properties1. Binary tree property
2. Balance property: balance of every node is between -1 and 1
Result:
Worst case depth is $\mathrm{O}(\log n)$

Ordering property

, Same as for BST

