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The AVL Balance Condition

AVL balance property:

Left and right subtrees of every node
have heights differing by at most 1

* Ensures small depth

> Will prove this by showing that an AVL tree of height
h must have a lot of (i.e. O(2")) nodes

« Easy to maintain
» Using single and double rotations

The AVL Tree Data Structure
Structural properties
1. Binary tree property
(0,1, or 2 children) (®
2. Heights of left and right
subtrees of every node (5) ®
differ by at most 1

Result: ) (6) ® ©

Worst case depth of any

Is this an AVL Tree?

*How do we track the
balance?

*How do we detect
imbalance?

*How do we restore

node is: O(log n) ® 00 0O
Ordering property ®
> Same as for BST
Circle One:
AVL
Not AVL
fﬁ) N
Not AVL

_ If not AVL, put a box around nodes where AVL property is violated.

Height of an AVL Tree

* M(h) = minimum number of nodes in an
AVL tree of height h.

» Basis

h
»y M(0) =1, M(1) = 2
« Induction A/.\A

> M(h) = M(h-1) + M(h-2) + 1 nli®

* Solution
> M(h)> ¢ -1 (¢ = (1+V5)/2 = 1.62)




Proof that M(h) > ¢

* Basis: M(0) =1 > ¢%-1, M(1) =2 > ¢'-1
* Induction step.
M(h) = M(h-1) + M(h-2) + 1
> (gM1- 1) + (M2 -1) +1
=" (¢ +1) -1
=" -1 (¢ =¢ +1)

Height of an AVL Tree

* M(h)>¢" (¢~ 1.62)
» Suppose we have N nodes in an AVL
tree of height h.
> N> M(h)
> N> ¢h-1
» logy(N+1) > h (relatively well balanced
treell)

Node Heights

height of node = h
balance factor = hj,-h,iq
empty height = -1

Node Heights after Insert 7

balance factor
1-(-1)=2

height of node = h a
balance factor = hj,q-h,iq
empty height = -1

Insert and Rotation in AVL
Trees

* Insert operation may cause balance factor

to become 2 or -2 for some node

» only nodes on the path from insertion point to
root node have possibly changed in height

» So after the Insert, go back up to the root
node by node, updating heights

» If a new balance factor (the difference hj-
Niignt) is 2 or —2, adjust tree by rotation around
the node

Single Rotation in an AVL
Tree




Insertions in AVL Trees
Let the node that needs rebalancing be o.

There are 4 cases:
Outside Cases (require single rotation) :
1. Insertion into left subtree of left child of a.
2. Insertion into right subtree of right child of a.
Inside Cases (require double rotation) :
3. Insertion into right subtree of left child of a.
4. Insertion into left subtree of right child of a.

The rebalancing is performed through four
separate rotation algorithms.

Bad Case #1

Insert(6)
Insert(3)
Insert(1)

Fix: Apply Single Rotation

AVL Property violated at this node (x)

®

Single Rotation:
1. Rotate between x and child

AVL Insertion: Outside Case

Consider a valid
AVL subtree

AVL Insertion: Outside Case

Inserting into X
destroys the AVL
property at node j

AVL Insertion: Outside Case

Do a “rotation from left”




Single rotation from left

Outside Case Completed

“rotation from left” done!
(“rotation from right” is
mirror symmetric)

AVL property has been restored!

Single rotation example

S

Bad Case #2

Insert(1)
Insert(6)
Insert(3)

Fix: Apply Double Rotation

AVL Property violated at this node (x)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

AVL Insertion: Inside Case

Consider a valid
AVL subtree




AVL Insertion: Inside Case

Does “rotation from left”
restore balance?

Inserting into Y
destroys the

AVL property
at node j

AVL Insertion: Inside Case

“Rotation from left”
does not restore
balance... now k is
out of balance

AVL Insertion: Inside Case

Consider the structure
of subtree Y...

AVL Insertion: Inside Case

Y =node i and
subtrees V and W

N

AVL Insertion: Inside Case

/ Wewilldoa
“double rotation” . . .

Double rotation : first rotation




Double rotation : second
rotation

Double rotation : second
rotation

right rotation complete

Balance has been
restored to the universe

Imbalance at node X

Single Rotation
1. Rotate between x and child

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

Insert into an AVL tree:abecd




Single and Double Rotations:

Inserting what integer values
would cause the tree to need a:

1. single rotation? Q

2. double rotation? Q e

3. no rotation?

Insertion into AVL tree

1. Find spot for new key
2. Hang new node there with this key
\ 3. Search back up the path for imbalance
4. If there is an imbalance:
case #1: Perform single rotation and exit

case #2: Perform double rotation and exit
Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient!

Easy Insert

Insert(3)

Unbalanced?

Hard Insert (Bad Case #1)

3

Insert(33)

Unbalanced?

How to fix?

Single Rotation,

Hard Insert (Bad Case #2)

3

Insert(18)

Unbalanced?

How to fix?




Double Rotation (Step #1)
Single Rotation (oops!) \ \

AVL Trees Reuvisited

= Balance condition:
For every node x, -1 < balance(x) <1
> Strong enough : Worst case depth is O(log n)
> Easy to maintain : one single or double rotation

» Guaranteed O(log n) running time for
> Find ?
> Insert ?
> Delete ?
> buildTree ?

AVL Trees Reuvisited Other Possibilities?

. . e » Could use different balance conditions,
* What extra info did we maintain in each different ways to maintain balance, different

node? guarantees on running time, ...
* Why aren’t AVL trees perfect?
* Many other balanced BST data structures

« Where were rotations performed? > Red-Black trees

> AAtrees

> Splay Trees
2-3 Trees

>
* How did we locate this node? » B-Trees
D




Implementation

balance (1,0,-1)
key
left right

Single Rotation

RotateFromRight (n : reference node pointer) {
: node pointer;

:= n.right;

.right := p.left;

.left := n;

=P
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Double Rotation

« Class participation
« Implement Double Rotation in two lines.

DoubleRotateFromRight (n : reference node pointer) {
2227
n

}

kk

AVL Tree Deletion

 Similar to insertion
» Rotations and double rotations needed to
rebalance
» Imbalance may propagate upward so that
many rotations may be needed.

Pros and Cons of AVL Trees

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always well balanced.
2. The height balancing adds no more than a constant factor to the
speed of insertion, deletion, and find.

Arguments against using AVL trees:

1. Difficult to program & debug; more space for height info.

2. Asymptotically faster but rebalancing costs time.

3. Most large searches are done in database systems on disk and use
other structures (e.g. B-trees).

4. May be OK to have O(N) for a single operation if total run time for
many consecutive operations is fast (e.g. Splay trees).




