
1

CSE 326: Data Structures

AVL Trees

Neva Cherniavsky

Summer 2006

The AVL Balance Condition
AVL balance property:

Left and right subtrees of every node
have heights differing by at most 1

• Ensures small depth
› Will prove this by showing that an AVL tree of height

h must have a lot of (i.e. O(2h)) nodes

• Easy to maintain
› Using single and double rotations

The AVL Tree Data Structure

4

121062

115

8

14137 9

Structural properties

1. Binary tree property
(0,1, or 2 children)

2. Heights of left and right
subtrees of every node
differ by at most 1

Result:

Worst case depth of any
node is: O(log n)

Ordering property

› Same as for BST
15

Is this an AVL Tree?

2092

155

10

30177

•How do we track the
balance?
•How do we detect
imbalance?
•How do we restore
balance?

111

84

6

3

1171

84

6

2

5

Student Activity If not AVL, put a box around nodes where AVL property is violated.

AVL

Not AVL

AVL

Not AVL

Circle One:

10 12

7

Height of an AVL Tree

• M(h) = minimum number of nodes in an
AVL tree of height h.

• Basis
› M(0) = 1, M(1) = 2

• Induction
› M(h) = M(h-1) + M(h-2) + 1

• Solution
› M(h) > φh - 1 (φ = (1+√5)/2 ≈ 1.62)

h-1
h-2

h

2

Proof that M(h) > φh

• Basis: M(0) = 1 > φ0 -1, M(1) = 2 > φ1-1

• Induction step.
M(h) = M(h-1) + M(h-2) + 1
 > (φh-1 - 1) + (φh-2 - 1) + 1
 = φh-2 (φ +1) - 1
 = φh - 1 (φ2 = φ +1)

Height of an AVL Tree

• M(h) > φh (φ ≈ 1.62)

• Suppose we have N nodes in an AVL
tree of height h.
› N > M(h)
› N > φh - 1

› logφ(N+1) > h (relatively well balanced
tree!!)

Node Heights

1

00

2

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright

empty height = -1

0

0

2

0

6

4 9

1 5

1

Node Heights after Insert 7

2

10

3

0

6

4 9

81 5

1

height of node = h
balance factor = hleft-hright

empty height = -1

1

0

2

0

6

4 9

1 5

1

0

7

0

7

balance factor
1-(-1) = 2

-1

Insert and Rotation in AVL
Trees

• Insert operation may cause balance factor
to become 2 or –2 for some node
› only nodes on the path from insertion point to

root node have possibly changed in height
› So after the Insert, go back up to the root

node by node, updating heights
› If a new balance factor (the difference hleft-

hright) is 2 or –2, adjust tree by rotation around
the node

Single Rotation in an AVL
Tree

2

10

2

0

6

4 9

81 5

1

0

7

0

1

0

2

0

6

4

9

8

1 5

1

0

7

3

Let the node that needs rebalancing be α.

There are 4 cases:
 Outside Cases (require single rotation) :
 1. Insertion into left subtree of left child of α.
 2. Insertion into right subtree of right child of α.
 Inside Cases (require double rotation) :
 3. Insertion into right subtree of left child of α.
 4. Insertion into left subtree of right child of α.

The rebalancing is performed through four
separate rotation algorithms.

Insertions in AVL Trees Bad Case #1

Insert(6)

Insert(3)

Insert(1)

Fix: Apply Single Rotation

3

1 6
00

1
6

3

1
0

1

2

Single Rotation:
1. Rotate between x and child

AVL Property violated at this node (x)

j

k

X Y

Z

Consider a valid
AVL subtree

AVL Insertion: Outside Case

h

h
h

j

k

X
Y

Z

Inserting into X
destroys the AVL
property at node j

AVL Insertion: Outside Case

h

h+1 h

j

k

X
Y

Z

Do a “rotation from left”

AVL Insertion: Outside Case

h

h+1 h

4

j

k

X
Y

Z

Single rotation from left

h

h+1 h

j

k

X Y Z

“rotation from left” done!
(“rotation from right” is
mirror symmetric)

Outside Case Completed

AVL property has been restored!

h

h+1

h

Single rotation example

21103

205

15

1

2 4

17

21

10

3 20

5

15

1

2

4

17

Bad Case #2

Insert(1)

Insert(6)

Insert(3)

Fix: Apply Double Rotation

3

1 6
00

1

3

6

1

0

1

 2

6

3

1

0

 1

 2

AVL Property violated at this node (x)

Double Rotation
1. Rotate between x’s child and grandchild
2. Rotate between x and x’s new child

j

k

X Y

Z

AVL Insertion: Inside Case

Consider a valid
AVL subtree

h

hh

5

Inserting into Y
destroys the
AVL property
at node j

j

k

X
Y

Z

AVL Insertion: Inside Case

Does “rotation from left”
restore balance?

h

h+1h

j
k

X

Y
Z

“Rotation from left”
does not restore
balance… now k is
out of balance

AVL Insertion: Inside Case

h
h+1

h

Consider the structure
of subtree Y… j

k

X
Y

Z

AVL Insertion: Inside Case

h

h+1h

j

k

X

V

Z

W

i

Y = node i and
subtrees V and W

AVL Insertion: Inside Case

h

h+1h

h or h-1

j

k

X

V

Z

W

i

AVL Insertion: Inside Case

We will do a
“double rotation” . . .

1

2 j

k

X V

Z
W

i

Double rotation : first rotation

6

j

k

X V

Z
W

i

Double rotation : second
rotation

jk

X V ZW

i

Double rotation : second
rotation

right rotation complete

Balance has been
restored to the universe

hh h or h-1

Double rotation, step 1

104

178

15

3 6

16

5

106

178

15

4

3

16

5

Double rotation, step 2

106

178

15

4

3

16

5

10

6 17

8

15

4

3

16

5

Imbalance at node X

Single Rotation

1. Rotate between x and child

Double Rotation

1. Rotate between x’s child and grandchild

2. Rotate between x and x’s new child

Insert into an AVL tree: a b e c d

Student Activity

7

9

5

2

11

7

1. single rotation?

2. double rotation?

3. no rotation?

Inserting what integer values
would cause the tree to need a:

Single and Double Rotations:

13

30

Student Activity

Insertion into AVL tree

1. Find spot for new key

2. Hang new node there with this key

3. Search back up the path for imbalance

4. If there is an imbalance:
case #1: Perform single rotation and exit

case #2: Perform double rotation and exit
Both rotations keep the subtree height unchanged.
Hence only one rotation is sufficient!

Easy Insert

2092

155

10

3017

Insert(3)

12
0

0

100

1 2

3

0

Unbalanced?

Hard Insert (Bad Case #1)

2092

155

10

3017

Insert(33)

3

12
1

0

100

2 2

3

00

How to fix?

Unbalanced?

Single Rotation

2092

155

10

30173

12

33

1

0

200

2 3

3

10

0

3092

205

10

333

15
1

0

110

2 2

3

00
1712

0

Hard Insert (Bad Case #2)
Insert(18)

2092

155

10

30173

12
1

0

100

2 2

3

00

How to fix?

Unbalanced?

8

Single Rotation (oops!)

2092

155

10

30173

12
1

1

200

2 3

3

00

3092

205

10

3

15
1

1

020

2 3

3

0
1712

0

18
0

18
0

Double Rotation (Step #1)

2092

155

10

30173

12
1

1

200

2 3

3

00

18
0

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

Double Rotation (Step #2)

1792

155

10

203

12
1 200

2 3

3

10

30
0

18
0

2092

175

10

303

15
1

 0

110

2 2

3

00
12

0
18

AVL Trees Revisited
• Balance condition:

For every node x, -1 ≤ balance(x) ≤ 1
› Strong enough : Worst case depth is O(log n)
› Easy to maintain : one single or double rotation

• Guaranteed O(log n) running time for
› Find ?
› Insert ?
› Delete ?
› buildTree ?

AVL Trees Revisited

• What extra info did we maintain in each
node?

• Where were rotations performed?

• How did we locate this node?

Other Possibilities?
• Could use different balance conditions,

different ways to maintain balance, different
guarantees on running time, …

• Why aren’t AVL trees perfect?
• Many other balanced BST data structures

› Red-Black trees
› AA trees
› Splay Trees
› 2-3 Trees
› B-Trees
› …

9

Implementation

balance (1,0,-1)

key

rightleft

Single Rotation

RotateFromRight(n : reference node pointer) {
p : node pointer;
p := n.right;
n.right := p.left;
p.left := n;
n := p
}

X

Y Z

n

Double Rotation

• Class participation
• Implement Double Rotation in two lines.

DoubleRotateFromRight(n : reference node pointer) {
????
}

X

n

V W

Z

AVL Tree Deletion

• Similar to insertion
› Rotations and double rotations needed to

rebalance

› Imbalance may propagate upward so that
many rotations may be needed.

Arguments for AVL trees:

1. Search is O(log N) since AVL trees are always well balanced.
2. The height balancing adds no more than a constant factor to the

speed of insertion, deletion, and find.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for height info.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).
4. May be OK to have O(N) for a single operation if total run time for

many consecutive operations is fast (e.g. Splay trees).

Pros and Cons of AVL Trees

