
1

CSE 326: Data Structures

Splay Trees

Neva Cherniavsky

Summer 2006

2

Announcements

• Midterm (July 17) during lecture
› Topics posted by Monday

• Project 2c posted early next week

3

Self adjustment for better
living

• Ordinary binary search trees have no balance
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time
as nodes are accessed

4

Splay Trees

• Blind adjusting version of AVL trees
› Why worry about balances? Just rotate

anyway!

• Amortized time per operations is O(log n)

• Worst case time per operation is O(n)
› But guaranteed to happen rarely

Insert/Find always rotate node to the
root!

5

Recall: Amortized Complexity

If a sequence of M operations takes O(M f(n)) time,
we say the amortized runtime is O(f(n)).

Amortized complexity is worst-case guarantee over
 sequences of operations.

• Worst case time per operation can still be large, say O(n)

• Worst case time for any sequence of M operations is O(M f(n))

Average time per operation for any sequence is O(f(n))

6

Recall: Amortized Complexity

• Is amortized guarantee any weaker than
worstcase?

• Is amortized guarantee any stronger than
averagecase?

• Is average case guarantee good enough in
practice?

• Is amortized guarantee good enough in practice?

2

7

The Splay Tree Idea

17

10

92

5

If you’re forced to make
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!

3

8

1. Find or insert a node k
2. Splay k to the root using:

zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1. Helps the new root, k
o Great if k is accessed again

2. And helps many others!
o Great if many others on the path are accessed

Find/Insert in Splay Trees

9

Splaying node k to the root:
Need to be careful!

One option (that we won’t use) is to repeatedly
use AVL single rotation until k becomes the
root: (see Section 4.5.1 for details)

s

A
k

B C

r

D

q

E

p

F

r

D

q

E

p

F

C

s

A B

k

10

Splaying node k to the root:
Need to be careful!

What’s bad about this process?

s

A k

B C

r

D

q

E

p

F

r

D

q

E

p

F

C

s

A B

k

11

• Let X be a non-root node with ≥ 2 ancestors.
• P is its parent node.
• G is its grandparent node.

P

G

X

G

P

X

G

P

X

G

P

X

Splay Tree Terminology

12

Zig-Zig and Zig-Zag

4

G 5

1 P Zig-zag

G

P 5

X 2

Zig-zig

X

Parent and grandparent
in same direction.

Parent and grandparent
in different directions.

3

13

Zig-Zag operation

• “Zig-Zag” consists of two rotations of the opposite
direction (assume R is the node that was accessed)

(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft

14

Splay: Zig-Zag*

g

X
p

Y

k

Z

W

*Just like an…

k

Y

g

W

p

ZX

Which nodes improve depth?

15

Zig-Zig operation

• “Zig-Zig” consists of two single rotations
of the same direction (R is the node that
was accessed)

(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft

16

Splay: Zig-Zig*

k

Z

Y

p

X

g

W

g

W

X

p

Y

k

Z

*Is this just two AVL single rotations in a row?

Why does this help?

17

Special Case for Root: Zig
p

X

k

Y

Z

root k

Z

p

Y

X

root

Relative depth of p, Y, Z? Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?

18

Splaying Example: Find(6)

2

1

3

4

5

6

Find(6)

2

1

3

6

5

4

?

4

19

Still Splaying 6

2

1

3

6

5

4

1

6

3

2 5

4

?

20

Finally…

1

6

3

2 5

4

6

1

3

2 5

4

?

21

Another Splay: Find(4)

Find(4)

6

1

3

2 5

4

6

1

4

3 5

2

?

22

Example Splayed Out

6

1

4

3 5

2

61

4

3 5

2

?

23

Student Activity: Find 2

61

4

3 5

2

• Find 2

• On new tree, how long would
it take now to access 6? What
about 4?

• Will our tree ever look like
what we started with?

24

Wait…

What happened here?

Didn’t two find operations take linear time
instead of logarithmic?

What about the amortized O(log n)
guarantee?

5

25

Why Splaying Helps

• If a node n on the access path is at depth d
before the splay, it’s at about depth d/2 after
the splay

• Overall, nodes which are low on the access
path tend to move closer to the root

• Splaying gets amortized O(log n) performance.
(Maybe not now, but soon, and for the rest of the operations.)

26

Practical Benefit of Splaying

• No heights to maintain, no imbalance to
check for
› Less storage per node, easier to code

• Often data that is accessed once,
is soon accessed again!
› Splaying does implicit caching by bringing it to

the root

27

Splay Operations: Find

• Find the node in normal BST manner

• Splay the node to the root
› if node not found, splay what would have

been its parent

What if we didn’t splay?

28

Splay Operations: Insert

• Insert the node in normal BST manner

• Splay the node to the root

What if we didn’t splay?

29

Example Insert

• Inserting in order 1,2,3,…,8

• Without self-adjustment

1

2

3

4

5

6

7

8

O(__) time

30

With Self-Adjustment

1

2

1 2

1

ZigFromRight

2

1 3

ZigFromRight
2

1

3

1

2

3

6

31

With Self-Adjustment

ZigFromRight2

1

34

4

2

1

3

4

O(__) time!!

32

Splay Operations: Remove

find(k)

L R

k

L R

> k< k

delete k

Now what?

33

Join
Join(L, R):

given two trees such that (stuff in L) < (stuff in R),
merge them:

Splay on the maximum element in L, then
attach R

L R R

L

Does this work to join any two trees?

splay

max

34

Example Deletion

10

155

201382

96

10

15

5

2013

8

2 96

splay

10

15

5

2013

2 96

remove

10

15

5

2013

2 9

6
splay

attach

35

Practice Delete

10

155

201382

96

36

Splay Tree Summary

• All operations are in amortized O(log n) time

• Splaying can be done top-down; this may be better
because:
› only one pass
› no recursion or parent pointers necessary
› we didn’t cover top-down in class

• Splay trees are very effective search trees
› Relatively simple
› No extra fields required
› Excellent locality properties: frequently accessed keys are

cheap to find

