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Announcements

• Midterm (July 17) during lecture
› Topics posted by Monday

• Project 2c posted early next week
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Self adjustment for better
living

• Ordinary binary search trees have no balance
conditions
› what you get from insertion order is it

• Balanced trees like AVL trees enforce a
balance condition when nodes change
› tree is always balanced after an insert or delete

• Self-adjusting trees get reorganized over time
as nodes are accessed
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Splay Trees

• Blind adjusting version of AVL trees
› Why worry about balances?  Just rotate

anyway!

• Amortized time per operations is O(log n)

• Worst case time per operation is O(n)
› But guaranteed to happen rarely

Insert/Find always rotate node to the
root!
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Recall: Amortized Complexity

If a sequence of M operations takes O(M f(n)) time,
we say the amortized runtime is O(f(n)).

Amortized complexity is   worst-case guarantee over
                                           sequences of operations.

•  Worst case time per operation can still be large, say O(n)

•  Worst case time for any sequence of M operations is O(M f(n))

Average time per operation for any sequence is O(f(n))
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Recall: Amortized Complexity

• Is amortized guarantee any weaker than
worstcase?

• Is amortized guarantee any stronger than
averagecase?

• Is average case guarantee good enough in
practice?

• Is amortized guarantee good enough in practice?
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The Splay Tree Idea
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If you’re forced to make 
a really deep access:

Since you’re down there anyway,
fix up a lot of deep nodes!
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1. Find or insert a node k
2. Splay k to the root using:

zig-zag, zig-zig, or plain old zig rotation

Why could this be good??

1. Helps the new root, k
o Great if k is accessed again

2. And helps many others!
o Great if many others on the path are accessed

Find/Insert in Splay Trees
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Splaying node k to the root:
Need to be careful!

One option (that we won’t use) is to repeatedly
use AVL single rotation until k becomes the
root:  (see Section 4.5.1 for details)
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Splaying node k to the root:
Need to be careful!

What’s bad about this process?
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• Let X be a non-root node with ≥ 2 ancestors.
•  P is its parent node.
•  G is its grandparent node.
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Splay Tree Terminology
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Zig-Zig and Zig-Zag
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Parent and grandparent
in same direction.

Parent and grandparent
in different directions.
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Zig-Zag operation

• “Zig-Zag” consists of two rotations of the opposite
direction (assume R is the node that was accessed)

(ZigFromRight) (ZigFromLeft)

ZigZagFromLeft
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Splay: Zig-Zag*
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Zig-Zig operation

• “Zig-Zig” consists of two single rotations
of the same direction (R is the node that
was accessed)

(ZigFromLeft) (ZigFromLeft)

ZigZigFromLeft
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Splay: Zig-Zig*
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Why does this help?
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Special Case for Root: Zig
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Relative depth of p, Y, Z? Relative depth of everyone else?

Why not drop zig-zig and just zig all the way?
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Splaying Example: Find(6)
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Still Splaying 6
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Finally…
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Another Splay: Find(4)

Find(4)
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Example Splayed Out
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Student Activity: Find 2
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• Find 2

• On new tree, how long would
it take now to access 6?  What
about 4?

• Will our tree ever look like
what we started with?
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Wait…

What happened here?

Didn’t two find operations take linear time
instead of logarithmic?

What about the amortized O(log n)
guarantee?
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Why Splaying Helps

• If a node n on the access path is at depth d
before the splay, it’s at about depth d/2 after
the splay

• Overall, nodes which are low on the access
path tend to move closer to the root

• Splaying gets amortized O(log n) performance.
(Maybe not now, but soon, and for the rest of the operations.)
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Practical Benefit of Splaying

• No heights to maintain, no imbalance to
check for
› Less storage per node, easier to code

• Often data that is accessed once,
is soon accessed again!
› Splaying does implicit caching by bringing it to

the root
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Splay Operations: Find

• Find the node in normal BST manner

• Splay the node to the root
› if node not found, splay what would have

been its parent

What if we didn’t splay?
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Splay Operations: Insert

• Insert the node in normal BST manner

• Splay the node to the root

What if we didn’t splay?

29

Example Insert

• Inserting in order 1,2,3,…,8

• Without self-adjustment
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With Self-Adjustment
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With Self-Adjustment

ZigFromRight2
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Splay Operations: Remove

find(k)

L R

k

L R

> k< k

delete k

Now what?
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Join
Join(L, R):

given two trees such that (stuff in L) < (stuff in R),
merge them:

Splay on the maximum element in L, then
attach R

L R R

L

Does this work to join any two trees?

splay

max
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Example Deletion
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Practice Delete
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Splay Tree Summary

• All operations are in amortized O(log n) time

• Splaying can be done top-down; this may be better
because:
› only one pass
› no recursion or parent pointers necessary
› we didn’t cover top-down in class

• Splay trees are very effective search trees
› Relatively simple
› No extra fields required
› Excellent locality properties: frequently accessed keys are

cheap to find


