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Splay Tree Summary

• All operations are in amortized O(log n) time

• Splaying can be done top-down; this may be better
because:
› only one pass
› no recursion or parent pointers necessary
› we didn’t cover top-down in class

• Splay trees are very effective search trees
› Relatively simple
› No extra fields required
› Excellent locality properties: frequently accessed keys are

cheap to find

Disk vs. Memory

• Disks many times slower than memory:
› Processor measured in GH = 109 cycles per second
› Main memory measured in microsec. = 106 per

second
› Disk seek measured in miliseconds = 103 per

second

• i.e. ~ 1 million instructions per disk lookup
• Measuring runtime by pointer lookups

meaningless if data can’t fit in main memory

Trees on disk

• Each pointer lookup means seeking the
disk

• Want as shallow a tree as possible
• Balanced binary tree with N nodes has

height ________?
• Balanced M-ary tree with N nodes has

height ________?

M-ary Search Tree

• Maximum branching factor of
M

• Complete tree has height =

# disk accesses for find:

Runtime of find:

Problems with M-ary Search Trees

1.

2.

3.
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Solution: B-Trees

• B-Trees are specialized M-ary search trees

• Each node has many keys (max M-1)

› subtree between two keys x and y contains
leaves with values v such that
x ≤ v < y

› binary search within a node

    to find correct subtree

• Each node takes one

    full {page, block}

    of memory

3 7 12 21   

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
• All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual
data
• The tree structure can be loaded into memory

irrespective of data object size
• Data actually resides in disk

Example

• 1k byte page

• Key 8 bytes, pointer 4 bytes

• (M-1)8 + 4M = 1024

    12 M = 1032
         M = 1032/12 = 86

B-Trees are multi-way search trees commonly used in
database systems or other applications where data is
stored externally on disks and keeping the tree shallow
is important.

A B-Tree of order M has the following properties:
   1. The root is either a leaf or has between 2 and M children.
   2. All nonleaf nodes (except the root) have between M/2 

and M children.
   3. All leaves are at the same depth. 

All data records are stored at the leaves.
Leaves store between M/2 and M data records.
Internal nodes only used for searching.

B-Trees

B-Tree: Example

B-Tree with M = 4 (# pointers in internal node)

1
AB

2
xG

  
3 5 6 9

10 11 12  

15 17  

20 25 26  

30 32 33 36

40 42   

50 60 70  

10 40  

3   15 20 30 50   

Note: All leaves at the same depth!

B-Tree Details

Each (non-leaf) internal node of a
B-tree has:
› Between M/2 and M children.

› up to M-1 keys k1 <  k2 < ... < kM-1

Keys are ordered so that:
k1 <  k2 < ... < kM-1

kM-1. . . . . .ki-1 kik1
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B-Tree Details

Each leaf node of a B-tree has:
› Between M/2 and M keys and pointers.

Keys are ordered so that:
k1 <  k2 < ... < kM-1

kM. . . . . .ki-1 kik1

Keys point to
data on other
pages.

Properties of B-Trees

Children of each internal node are "between" the items in
that node.

Suppose subtree Ti is the i-th child of the node:

all keys in Ti must be between keys ki-1 and ki

i.e. ki-1 ≤ Ti < ki

ki-1 is the smallest key in Ti
All keys in first subtree T1 < k1

All keys in last subtree TM ≥ kM-1

k1

TTii

. . . . . . kki-1 kkii

TTMTT11

kkM-1

. . . . . . 

Inserting into B-Trees

• Insert X: Do a Find on X and find appropriate leaf node
› If leaf node is not full, fill in empty slot with X

• E.g. Insert 5
› If leaf node is full, split leaf node and adjust parents up to root

node
• E.g. Insert 9

13:-

6:11

3  4 6  7  8 11 12 13  14 17 18

17:-

Insert Example

13:-

6:11

3  4 6  7 11 12 13  14 17 18

17:-

8 9

Insert Example

13:-

6:-

3  4 6  7 11 12 13  14 17 18

17:-

8 9

11:-

Insert Example

8:13

6:-

3  4 6  7 11 12 13  14 17 18

17:-

8 9

11:-
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Deleting From B-Trees

• Delete X : Do a find and remove from leaf
› Leaf underflows – borrow from a neighbor

• E.g. 11
› Leaf underflows and can’t borrow – merge nodes, delete

parent
• E.g. 17

13:-

6:11

3  4 6  7  8 11 12 13  14 17 18

17:-

Delete Example

13:-

6:11

3  4 6  7  8 11 12 13  14  18

17:-

Delete Example

13:-

6:11

3  4 6  7  8 11 12 13  14 18

-:-

Delete Example

11:-

6:-

3  4 6  7  8 11 12 13  14 18

13:-

Run Time Analysis of B-Tree
Operations

• For a B-Tree of order M
› Each internal node has up to M-1 keys to

search
› Each internal node has between M/2 and M

children
› Depth of B-Tree storing N items is O(log M/2N)

• Example: M = 86
› log43N = log2 N / log2 43 =.184 log2 N
› log43 1,000,000,000 = 5.51

Summary of Search Trees

• Problem with Search Trees: Must keep tree balanced
to allow fast access to stored items

• AVL trees: Insert/Delete operations keep tree balanced
• Splay trees: Repeated Find operations produce

balanced trees on average
• Multi-way search trees (e.g. B-Trees): More than two

children
› per node allows shallow trees; all leaves are at the

same depth
› keeping tree balanced at all times


