

Splay Tree Summary

- All operations are in amortized $\mathrm{O}(\log n)$ time
- Splaying can be done top-down; this may be better because:
, only one pass
, no recursion or parent pointers necessary
, we didn't cover top-down in class
- Splay trees are very effective search trees
) Relatively simple
, No extra fields required
, Excellent locality properties: frequently accessed keys are cheap to find

Disk vs. Memory

- Disks many times slower than memory:
, Processor measured in $\mathrm{GH}=10^{9}$ cycles per second
) Main memory measured in microsec. $=10^{6}$ per second
, Disk seek measured in miliseconds $=10^{3}$ per second
- i.e. ~ 1 million instructions per disk lookup
- Measuring runtime by pointer lookups meaningless if data can't fit in main memory

Trees on disk

- Each pointer lookup means seeking the disk
- Want as shallow a tree as possible
- Balanced binary tree with N nodes has height \qquad ?
- Balanced M-ary tree with N nodes has height \qquad ?

Problems with M-ary Search Trees

1.
2.
3.

Solution: B-Trees

- B-Trees are specialized M-ary search trees
- Each node has many keys (max M-1)
, subtree between two keys x and y contains leaves with values v such that $x \leq v<y$
, binary search within a node to find correct subtree
- Each node takes one full \{page, block\}
 of memory

Example

- 1k byte page
- Key 8 bytes, pointer 4 bytes
- (M-1) $8+4 \mathrm{M}=1024$
$12 M=1032$
$M=\lfloor 1032 / 12\rfloor=86$

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node

- All brought to memory/cache in one access!

2. Internal nodes contain only keys;

Only leaf nodes contain keys and actual data

- The tree structure can be loaded into memory irrespective of data object size
- Data actually resides in disk

B-Trees

B-Trees are multi-way search trees commonly used in database systems or other applications where data is stored externally on disks and keeping the tree shallow is important.

A B-Tree of order M has the following properties:

1. The root is either a leaf or has between 2 and M children.
2. All nonleaf nodes (except the root) have between $\lceil\mathrm{M} / 2\rceil$ and M children.
3. All leaves are at the same depth

> All data records are stored at the leaves.
> Leaves store between $\lceil\mathrm{M} / 2\rceil$ and M data records.

Internal nodes only used for searching

B-Tree Details

Each (non-leaf) internal node of a B-tree has:
> Between $\lceil\mathrm{M} / 2\rceil$ and M children.
> up to M-1 keys $\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{\mathrm{M}-1}$

Keys are ordered so that: $\mathrm{k}_{1}<\mathrm{k}_{2}<\ldots<\mathrm{k}_{\mathrm{M}-1}$

B-Tree Details

Each leaf node of a B-tree has:

, Between $\lceil M / 2\rceil$ and M keys and pointers.

Properties of B-Trees

Children of each internal node are "between" the items in that node.
Suppose subtree T_{i} is the i-th child of the node: all keys in T_{i} must be between keys $\mathrm{k}_{\mathrm{i}-1}$ and k_{i} i.e. $\mathrm{k}_{\mathrm{i}-1} \leq \mathrm{T}_{\mathrm{i}}<\mathrm{k}_{\mathrm{i}}$
$\mathrm{k}_{\mathrm{i}-1}$ is the smallest key in T_{i}
All keys in first subtree $T_{1}<k_{1}$
All keys in last subtree $T_{M} \geq k_{M-1}$

Deleting From B-Trees

- Delete X: Do a find and remove from leaf
, Leaf underflows - borrow from a neighbor
- E.g. 11
, Leaf underflows and can't borrow - merge nodes, delete parent
- E.g. 17

Delete Example

Summary of Search Trees

- Problem with Search Trees: Must keep tree balanced to allow fast access to stored items
- AVL trees: Insert/Delete operations keep tree balanced
- Splay trees: Repeated Find operations produce balanced trees on average
- Multi-way search trees (e.g. B-Trees): More than two children
, per node allows shallow trees; all leaves are at the same depth
, keeping tree balanced at all times
, $\log _{43} \mathrm{~N}=\log _{2} \mathrm{~N} / \log _{2} 43=.184 \log _{2} \mathrm{~N}$
, $\log _{43} 1,000,000,000=5.51$

