

Examples of Equivalence Relations

- \geq : Is it reflexive, symmetric, and transitive?
- Electrical connectivity: Is it reflexive, symmetric, and transitive?
- Two cities in the same country: Is it reflexive, symmetric, and transitive?

Equivalence Relations

Relation R :

- For every pair of elements (a, b) in a set $S, a r b$ is either true or false.
- If $\mathrm{a} R \mathrm{~b}$ is true, then a is related to b .

An equivalence relation satisfies:

1. (Reflexive) a R a
2. (Symmetric) a $R \mathrm{~b}$ iff $\mathrm{b} R \mathrm{a}$
3. (Transitive) a $R \mathrm{~b}$ and $\mathrm{b} R \mathrm{c}$ implies $\mathrm{a} R \mathrm{c}$

Determining Equivalence Classes

- Divide set S into subsets containing items related to each other
, \{Paris, Lyon\}, \{Seattle, New York, Boston\}, \{London\}, \{Bombay, Calcutta\}
- Given the set, how do we determine these classes?
> \{Paris\} , \{Lyon\}, \{Seattle\}, \{New York\}, \{Boston\}, \{London\}, \{Bombay\}, \{Calcutta\}

Solution: Union/Find

Algorithm:

- Start with sets $\mathrm{S}_{0}, \mathrm{~S}_{1}, \mathrm{~S}_{2}, \ldots, \mathrm{~S}_{\mathrm{k}}$
- Check: is S_{0} related to S_{1} ? (Does find return the same value?)
- If so, perform union

Applications:

- Graph theory problems (project phase C)
- Compiler checking type relations

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets. , \{Paris\}, \{Lyon\}, \{Seattle, New York\}, \{Boston\}, \{London\}, \{Bombay, Calcutta\} , $\{3,5,7\},\{4,2,8\},\{9\},\{1,6\}$
- Each set has a unique name, one of its members
, \{Paris\}, \{Lyon\}, \{Seattle, New York\}, \{Boston\}, \{London\}, \{Bombay, Calcutta\}
' $\{3, \underline{5}, 7\},\{4,2,8\},\{9\},\{1,6\}$

Union

- Union (x, y) - take the union of two sets named x and y
, $\{3, \underline{5}, 7\},\{4,2,8\},\{9\},\{1,6\}$
, Union(5,1)
$\{3, \underline{5}, 7,1,6\},\{4,2,8\},\{9\}$,

Find

- Find (x) - return the name of the set containing x.
> $\{3, \underline{5}, 7,1,6\},\{4,2,8\},\{9\}$,
) $\operatorname{Find}(1)=5$
) $\operatorname{Find}(4)=8$

Find Operation

- Find (x) follow x to the root and return the root

- Target complexity: $\mathrm{O}(m+n)$

i.e. $\mathrm{O}(1)$ amortized

- $\mathrm{O}(1)$ worst-case for find as well as union would be great, but...
Known result: both find and union cannot be done in worst-case $O(1)$ time

Union Operation
• Union($\mathrm{i}, \mathrm{j})$ - assuming i and j roots, point i
to j .

Simple Implementation

- Array of indices

		2	3	4	5	6	7	$U p[x]=0 \text { means }$ x is a root.
up	0	1	0	7	7	5	0	

Union
Union(up[] : integer array, x,y : integer) : (//precondition: x and y are roots// Up $[x]$:= y
Constant Time!

Exercise

- Design Find operator
, Recursive version
Iterative version

Find (up [] : integer array, x : integer) : integer \{ //precondition: x is in the range 1 to size//
//p
1

A Bad Case

Now this doesn't look good $:$
Can we do better? Yes!

1. Improve union so that find only takes $\mathrm{O}(\log n)$

- Union-by-size
- Reduces complexity to $\mathrm{O}(m \log n+n)$

2. Improve find so that it becomes even better!

- Path compression
- Reduces complexity to almost $\mathrm{O}(m+n)$

Analysis of Weighted Union

- Let T be an up-tree of weight n formed by weighted union. Let h be its height.
- $\mathrm{n} \geq 2^{\mathrm{h}}$
- $\log _{2} n \geq h$
- Find (x) in tree T takes $O(\log n)$ time.
- Can we do better?

Example of Worst Cast (cont')

After n-1 $=\mathrm{n} / 2+\mathrm{n} / 4+\ldots+1$ Weighted Unions

If there are $n=2^{k}$ nodes then the longest path from leaf to root has length k .

Weighted Union

W-Union(i,j : index) //i and j are roots//
wi := weight[i];
wj := weight[j];
if wi < wj then up[i] := j; weight[j] := wi + wj;
else
up [j] :=i; weight[i] := wi +wj;
\}

Union-by-size: Find Analysis

- Complexity of Find: O(max node depth)
- All nodes start at depth 0
- Node depth increases:
, Only when it is part of smaller tree in a union
, Only by one level at a time
Result: tree size doubles when node depth increases by 1
Find runtime $=\mathrm{O}($ node depth $)=$
runtime for m finds and $n-1$ unions $=$

Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Path Compression Find

```
PC-Find(i : index) {
    r := i;
    while up[r] \not= 0 do //find root//
        r := up[r];
    if i }\not=r\mathrm{ then //compress path//
        k := up[i];
        while k f r do
            up[i] := r;
            i := k;
            k := up[k]
    return(r)
}
```


Complex Complexity of Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and find operations on a set of n elements have worst case complexity of $\mathrm{O}(p \cdot \alpha(p, n))$

For all practical purposes this is amortized constant time:
$\mathrm{O}(p \cdot 4)$ for p operations!

- Very complex analysis - worse than splay tree analysis etc. that we skipped!

Disjoint Union / Find with Weighted Union and PC

- Worst case time complexity for a W-Union is $\mathrm{O}(1)$ and for a PC-Find is $\mathrm{O}(\log n)$.
- Time complexity for $m \geq n$ operations on n elements is $O\left(m \log ^{*} n\right)$ where $\log ^{*} n$ is a very slow growing function.

Log * $n<7$ for all reasonable n. Essentially constant time per operation!

- Using "ranked union" gives an even better bound theoretically.

Find Solutions

Recursive

Find(up [] : integer array, x : integer) : integer precondition: x is in the range 1 to size/y
if $u p[x]=0$ then return x
else return Find (up, up [x]);

Iterative
Find (up [] : integer array, x : integer) : integer $\{$
//precondition: x is in the range 1 to size//
while $u p[x] \neq 0$ do
$\mathrm{x}:=\mathrm{up}[\mathrm{x}]$;
return x ;
\}

Amortized Complexity

- For disjoint union / find with weighted union and path compression.
, average time per operation is essentially a constant.
, worst case time for a PC-Find is $\mathrm{O}(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.

