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CSE 326: Data Structures

Disjoint Sets

Neva Cherniavsky

Summer 2006

Equivalence Relations

Relation R :
• For every pair of elements (a, b) in a set

S, a R b is either true or false.
• If a R b is true, then a is related to b.
An equivalence relation satisfies:
1. (Reflexive) a R a
2. (Symmetric) a R b iff b R a
3. (Transitive) a R b and b R c implies a R c

Examples of Equivalence
Relations

•  ≥ : Is it reflexive, symmetric, and
transitive?

• Electrical connectivity: Is it reflexive,
symmetric, and transitive?

• Two cities in the same country: Is it
reflexive, symmetric, and transitive?

Determining Equivalence Classes

• Divide set S into subsets containing
items related to each other
› {Paris, Lyon} , {Seattle, New York, Boston},

{London}, {Bombay, Calcutta}

• Given the set, how do we determine
these classes?
› {Paris} , {Lyon} , {Seattle} , {New York} ,

{Boston}, {London}, {Bombay} , {Calcutta}

Solution: Union/Find

Algorithm:

• Start with sets S0, S1, S2, … , Sk

• Check: is S0 related to S1?  (Does find
return the same value?)

• If so, perform union

Applications:

• Graph theory problems (project phase C)

• Compiler checking type relations

Disjoint Union - Find

• Maintain a set of pairwise disjoint sets.
› {Paris} , {Lyon} , {Seattle, New York} ,

{Boston}, {London}, {Bombay, Calcutta}

› {3,5,7} , {4,2,8}, {9}, {1,6}

• Each set has a unique name, one of its
members
› {Paris} , {Lyon} , {Seattle, New York} ,

{Boston}, {London}, {Bombay, Calcutta}

› {3,5,7} , {4,2,8}, {9}, {1,6}
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Union

• Union(x,y) – take the union of two sets
named x and y
› {3,5,7} , {4,2,8}, {9}, {1,6}

› Union(5,1)

   {3,5,7,1,6}, {4,2,8}, {9},

Find

• Find(x) – return the name of the set
containing x.
› {3,5,7,1,6}, {4,2,8}, {9},

› Find(1) = 5

› Find(4) = 8

Example

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
  33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
  33,34,35,36}

Union(7,20)

Implementing the DS ADT
• n elements,

Total Cost of: m finds, ≤ n-1 unions

• Target complexity: O(m+n)
        i.e. O(1) amortized

• O(1) worst-case for find as well as union
would be great, but…

Known result: both find and union cannot be
done in worst-case O(1) time

can there be
more unions?

Up-Tree for DU/F

1 2 3 4 5 6 7Initial state

1

2

3

45

6

7Intermediate
state

Roots are the names of each set.

Find Operation

• Find(x) follow x to the root and return the
root

1

2

3

45

6

7

Find(6) = 7



3

Union Operation

• Union(i,j) - assuming i and j roots, point i
to j.

1

2

3

45

6

7

Union(1,7)

Simple Implementation

• Array of indices

1

2

3

45

6

7

0 1 0 7 7 5 0

1   2    3    4   5    6   7

up

Up[x] = 0 means
x is a root.

Union

Union(up[] : integer array, x,y : integer) : {
//precondition: x and y are roots//
Up[x] := y
}

Constant Time!

Exercise

• Design Find operator
› Recursive version
› Iterative version

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
???
}

 A Bad Case

1 2 3 n…

1

2 3 n

Union(1,2)

1

2

3 n

Union(2,3)

Union(n-1,n)

…

…

1

2

3

n

:
:

Find(1)   n steps!!

Now this doesn’t look good 
Can we do better?     Yes!

1. Improve union so that find only takes O(log n)
• Union-by-size
• Reduces complexity to O(m log n + n)

2. Improve find so that it becomes even better!
• Path compression
• Reduces complexity to almost O(m + n)
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Weighted Union

• Weighted Union
› Always point the smaller tree to the root of

the larger tree

1

2

3

45

6

7

W-Union(1,7)

2 41

Example Again

1 2 3 n

1

2 3 n

Union(1,2)

1

2

3

n

Union(2,3)

Union(n-1,n)

…

… :
:

1

2

3 n

…

Find(1)   constant time
…

Analysis of Weighted Union

• With weighted union an up-tree of height h has weight
at least 2h.

• Proof by induction
› Basis: h = 0. The up-tree has one node, 20 = 1

› Inductive step: Assume true for all h’ < h.

h-1
Minimum weight
up-tree of height h
formed by
weighted unions

T1 T2

T W(T1) > W(T2) > 2h-1

Weighted
union

Induction
hypothesis

W(T) > 2h-1 + 2h-1 = 2h

Analysis of Weighted Union

• Let T be an up-tree of weight n formed by
weighted union.  Let h be its height.

• n > 2h

• log2 n > h

• Find(x) in tree T takes O(log n) time.

• Can we do better?

Worst Case for Weighted
Union

n/2 Weighted Unions

n/4 Weighted Unions

Example of Worst Cast (cont’)

After n -1 = n/2 + n/4 + …+ 1 Weighted Unions

Find
If there are n = 2k nodes then the longest
path from leaf to root has length k.

log2n
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Elegant Array Implementation

1

2

3

45

6

7
2 41

0
2

1 0
1

7 7 5 0
4

1   2   3  4  5   6   7  
up

weight

Weighted Union

W-Union(i,j : index){
//i and j are roots//
  wi := weight[i];
  wj := weight[j];
  if wi < wj then
    up[i] := j;
    weight[j] := wi + wj;
  else
    up[j] :=i;
    weight[i] := wi +wj;
}

Union-by-size: Find Analysis
• Complexity of Find: O(max node depth)

• All nodes start at depth 0
• Node depth increases:

› Only when it is part of smaller tree in a union
› Only by one level at a time
Result: tree size doubles when node depth increases by 1

Find runtime = O(node depth) =

runtime for m finds and n-1 unions =

Path Compression

• On a Find operation point all the nodes on the
search path directly to the root.

1

2

3

45

6

7 1

2 3 456

7

PC-Find(3)

8 9

10

8 910

Draw the result of Find(e):

f ha

b

c

d

e

g

i

Student Activity

Self-Adjustment Works

PC-Find(x)

x
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Path Compression Find

PC-Find(i : index) {
  r := i;
  while up[r] ≠ 0 do //find root//
    r := up[r];
  if i ≠ r then  //compress path//
    k := up[i];
    while k ≠ r do
      up[i] := r;
      i := k;
      k := up[k]
  return(r)
}

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union and find
operations on a set of n elements have worst case
complexity of O(p ⋅ α(p, n))

For all practical purposes this is amortized constant time:
 O(p ⋅ 4) for p operations!

• Very complex analysis – worse than splay tree analysis
etc. that we skipped!

Disjoint Union / Find
with Weighted Union and PC

• Worst case time complexity for a W-Union is O(1) and
for a PC-Find is O(log n).

• Time complexity for m ≥ n operations on n elements is
O(m log* n)  where log* n is a very slow growing
function.
› Log * n < 7 for all reasonable n. Essentially constant time per

operation!

• Using “ranked union” gives an even better bound
theoretically.

Amortized Complexity

• For disjoint union / find with weighted
union and path compression.
› average time per operation is essentially a

constant.

›  worst case time for a PC-Find is O(log n).

• An individual operation can be costly, but
over time the average cost per operation
is not.

Find Solutions

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
if up[x] = 0 then return x
else return Find(up,up[x]);
}

Find(up[] : integer array, x : integer) : integer {
//precondition: x is in the range 1 to size//
while up[x] ≠ 0 do
  x := up[x];
return x;
}

Recursive

Iterative


