
1

CSE 326: Data Structures

Hashing

Neva Cherniavsky

Summer 2006

Announcements

• Midterms
› Gary will hand out tomorrow

• Project Phase C due tomorrow
› Brief overview of Kruskal’s method today

Cute Application

• Build a random maze by erasing edges.

Cute Application

• Pick Start and End

Start

End

Cute Application

• Repeatedly pick random edges to delete.

Start

End

Desired Properties

• None of the boundary is deleted

• Every cell is reachable from every other
cell.

• There are no cycles – no cell can reach
itself by a path unless it retraces some
part of the path.

2

A Cycle

Start

End

A Good Solution

Start

End

Number the Cells

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

We have disjoint sets S ={ {1}, {2}, {3}, {4},… {36} } each cell is unto itself.
We have all possible edges E ={ (1,2), (1,7), (2,8), (2,3), … } 60 edges total.

Basic Algorithm

• S = set of sets of connected cells
• E = set of edges
• Maze = set of maze edges initially empty

While there is more than one set in S
 pick a random edge (x,y) and remove from E
 u := Find(x);
 v := Find(y);
 if u ≠ v then
 Union(u,v)
 else
 add (x,y) to Maze
All remaining members of E together with Maze form the maze

Example Step

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,30,32
 33,34,35,36}

Pick (8,14)

Example

S
{1,2,7,8,9,13,19}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{14,20,26,27}
{15,16,21}
.
.
{22,23,24,29,39,32
 33,34,35,36}

Find(8) = 7
Find(14) = 20

S
{1,2,7,8,9,13,19,14,20 26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
 33,34,35,36}

Union(7,20)

3

Example

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,7,8,9,13,19
 14,20,26,27}
{3}
{4}
{5}
{6}
{10}
{11,17}
{12}
{15,16,21}
.
.
{22,23,24,29,39,32
 33,34,35,36}

Pick (19,20)

Example at the End

Start

End

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

S
{1,2,3,4,5,6,7,… 36}

E
Maze

Hash Tables
• Constant time accesses!
• A hash table is an array of some

fixed size, usually a prime number.
• General idea:

key space (e.g., integers, strings)

…

0

TableSize –1

hash function:
h(K)

hash table

Simple Hash Table

Hash function:

h : U → { 0,1,…,Hsize -1}

U is the universe of keys

h(“name”) is the hash value of “name”

h(Judy Jones) = 4
h(Jerry Lee) = 7

Find(“name”) = T[h(“name”)]

0
1
2
3
4
5
6
7
8
9

John Smith

Judy Jones

Martha Lee
Jerry Lee

T

Example
• key space = integers
• TableSize = 10

• h(K) = K mod 10

• Insert: 7, 18, 41, 94

2

3

9

8

7

6

5

4

1

0
Another Example

• key space = integers
• TableSize = 6

• h(K) = K mod 6

• Insert: 7, 18, 41, 34

2

3

5

4

1

0

Student Activity

4

General Idea

• Key space of size M, but we only want to
store subset of size N, where N<<M.
› Keys are identifiers in programs. Compiler

keeps track of them in a symbol table.

› Keys are student names. We want to look
up student records quickly by name.

› Keys are chess configurations in a chess
playing program.

› Keys are URLs in a database of web pages.

Hash Functions
1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed evenly among cells.

Time for insert/delete/find?

Downsides?

Sample Hash Functions:

• key space = strings

• s = s0 s1 s2 … s k-1

1. h(s) = s0 mod TableSize

2. h(s) = mod TableSize

3. h(s) = mod TableSize









∑
−

=

1

0

k

i
is









⋅∑

−

=

1

0

37
k

i

i
is

Pluses and minuses?

TableSize?

Designing a Hash Function for web
URLs

s = s0 s1 s2 … s k-1

Issues to take into account:

h(s) =

Good Hash Functions

• Integers: Division method
› Choose Hsize to be a prime (Why?)

› h(n) = n mod Hsize

› Example. Hsize = 23, h(50) = 4, h(1257) = 15

› When might this fail?

Good Hash Functions

• Character Strings
› x = a0a1a2…am is a character string. Define

 int(x) = a0+a1128 + a21282 +… +am128m-1

 h(x) = int(x) mod Hsize

› Compute h(x) using Horner’s Rule
h :=0
for i = m to 0 by -1 do h := (ai +128h) mod Hsize
return h

5

tableSize: Why Prime?

• Suppose
› data stored in hash table: 7160, 493, 60, 55,

321, 900, 810

› tableSize = 10

data hashes to 0, 3, 0, 5, 1, 0, 0

› tableSize = 11

data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends
to have a pattern

Being a multiple of
11 is usually not the
pattern 

A Bad Hash Function

• Keys able1, able2, able3, able4
› Hsize = 128
 int(ablex) mod 128 = int(a) = 97
 Thus, h(ablex) =h(abley) for all x and y

What is the central problem we’re trying to avoid?

How can we fix it?

