Collision Resolution

Collision: when two keys map to the same
location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining

2. Open Addressing (linear probing,
quadratic probing, double hashing)

Separate Chaining

same hash value
are kept in a list
(or “bucket”).

0 10
2

1 107

2 12

3 4

4 + Separate

5 chaining: All keys

6 that map to the

7

8

9

Open Hashing (Chaining)

0

1| g a4l]

2 « h(a) = h(b) and h(d) = h(g)
3 « Chains may be ordered or
2 —ld[Ftel | unordered. Little advantage
s] to ordering.

7

8 [l |

9

Analysis of find

* Defn: The load factor, A, of a hash table
is the ratio: N < no. of elements

M - table size

For separate chaining, A = average # of
elements in a bucket

» Unsuccessful find cost:

» Successful find cost:

How big should the hash table be?

 For Separate Chaining:

Closed Hashing (Open
Addressing)

» No chaining, every key fits in the hash table.
* Probe sequence

» h(k)
» (h(k) + (1)) mod HSize
» (h(k) + f(2)) mod HSize , ...

* Insertion: Find the first probe with an empty

slot.

» Find: Find the first probe that equals the query

or is empty. Stop at HSize probe, in any case.

+ Deletion: lazy deletion is needed. That is,

mark locations as deleted, if a deleted key
resides there.

Open Addressing

Insert:
38

19

8

109
10

* Linear Probing:
after checking

spot h(k), try spot
h(k)+1, if that is
full, try h(k)+2,
then h(k)+3, etc.

© 0N Ok WN -~ O

Linear Probing
f(i) =i
» Probe sequence:
Ot probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2t probe = (h(k) + 2) mod TableSize

it probe = (h(k) + i) mod TableSize

Terminology Alert!

“Open Hashing” “Closed Hashing”
equals equals
“Separate Chaining” “Open Addressing”

Weiss

Linear Probing Example

Write pseudocode for find(k) for
Open Addressing with linear
probing
 Find(k) returns i where T(i) = k

Linear Probing — Clustering

SRR
no collision V””;DLIA\,\LJ\QEIE.

no collision—— 3, Lmiessi

e L)
umauuumuwmﬂffi,//rcmmmnmﬂmmCmuu
Lo e

eI

e

I
(ojieneiel®L

S

RO L AR AR y

) MR UL
. _ .
e ul‘—‘ — collision in large cluste

fasme

Ly e e

IS

e e
RO

; i
o st
o R

uumummmmﬁu
[R. Sedgewick]

Load Factor in Linear Probing

* For any A <1, linear probing will find an empty slot

« Expected # of probes (for large table sizes)

> successful search:
1

frta)

1

i)

 Linear probing suffers from primary clustering
« Performance quickly degrades for A > 1/2

> unsuccessful search:

Quadratic Probing [Lesstikely

to encounter
. . Primary
=i2
f(l) =1 Clustering

* Probe sequence:
Ot probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2t probe = (h(k) + 4) mod TableSize
3t probe = (h(k) + 9) mod TableSize

it probe = (h(k) + i2) mod TableSize

Exercise: Quadratic Probing

© O N Ok WN -~ O

Quadratic Probing Example

insert(76) insert(40) insert(48) insert(5) insert(55)

76%7 =6 40%7 =5 48%7 =06 5%7=35 55%7=6

0

1 insert(47)
|| But... 47%7=5

2

3

4

5

¢ 76

Quadratic Probing:
Success guarantee for A < 1/2

+ If size is prime and A < 1/2, then quadratic probing
will find an empty slot in size/2 probes or fewer.
> showforallo = i,j < size/2andi w» j
(h(x) + i?) mod size w» (h(x) + j?) mod size
» by contradiction: suppose that for some i w j:
(h(x) + i?) mod size = (h(x) + j2) mod size
= i2 mod size = j? mod size
= (i2 - j?) mod size = 0
= [(i + j)(i - j)] mod size = 0
BUT size does not divide (i-j) or (i+j)

Quadratic Probing may Fail if A > 1/2

51mod7=2;i=0
51 2+1)mod7=3;i=1
(3+3)mod7=6;i=2
(6+5)mod7=4;i=3
4+7)mod7=4;i=4
4+9) mod7=6;i=5
6+11)mod7=3;i=

6
(3+13)mod7=2,i=7

Quadratic Probing: Properties

« For any A < 1/2, quadratic probing will find an
empty slot; for bigger A, quadratic probing may find
a slot

* Quadratic probing does not suffer from primary
clustering: keys hashing to the same area are not
bad

« But what about keys that hash to the same spot?
> Secondary Clustering!

Double Hashing

f(i) =17 g(k)
where g is a second hash function

» Probe sequence:
Ot probe = h(k) mod TableSize
1th probe = (h(k) + g(k)) mod TableSize
2th probe = (h(k) + 2*g(k)) mod TableSize
3t probe = (h(k) + 3*g(k)) mod TableSize

it probe = (h(k) + i*g(k)) mod TableSize

Double Hashing Example

h(k) =k mod 7 and g(k) = 5 — (k mod 5)

76 93 40 47 10 55

o b WwWN =2 O
o b WN 2O
o b WN 2O
o b WN 2O
o b wWN 2O
o b WN 2O

o

Probes 1

Resolving Collisions with Double Hashing

0 Hash Functions:
1 H(K) = K mod M
Hy(K) = 1 + ((KIM) mod (M-1))
2 M =
3
4 Insert these values into the hash table
in this order. Resolve any collisions
5 with double hashing:
6 13
’ 5
8 147
9 43

Double Hashing is Safe for A <1

« Let h(k) =k mod p and g(k) = q — (k mod q) where 2 <
g <p and p and q are primes. The probe sequence
h(k) + ig(k) mod p probes every entry of the hash table.

Let0 <m<p, h =h(k), and g = g(k). We show that h+ig mod p =
m for some i. 0 <g<p, sogand p are relatively prime. By
extended Euclid’s algorithm that are s and t such that

sg +tp = 1. Choose i = (m-h)s mod p
(h +ig) mod p =

(h + (m-h)sg) mod p =

(h + (m-h)sg + (m-h)tp) mod p =

(h + (m-h)(sg + tp) mod p =

(h +(m-h)) mod p=mmodp=m

Deletion in Hashing

* Open hashing (chaining) — no problem
« Closed hashing — must do lazy deletion. Deleted keys
are marked as deleted.
> Find: done normally
> Insert: treat marked slot as an empty slot and fill it.

Insert 30
h(k) =k mod 7
Linear probing

Find 59

o s wWNN 2O
o b WN 2O

Rehashing

Idea: When the table gets too full, create
a bigger table (usually 2x as large) and
hash all the items from the original table
into the new table.

* When to rehash?

» half full (A = 0.5)
» when an insertion fails
» some other threshold

 Cost of rehashing?

Rehashing Example

» Open hashing — h,(x) = x mod 5 rehashes to
h,(x) = x mod 11.

012 3 4
=1 EEEEN
2% 37 83
52 98
012 3 4567 89 10
vzt A EEEEEREREEN
2537 8 52 98

Rehashing Picture

« Starting with table of size 2, double when
load factor > 1.

1 hashes
| rehashes

T I Y | I Y
123 45 67 89 1011121314 15161718 1920 212324 25

Amortized Analysis of
Rehashing
» Cost of inserting n keys is < 3n
o 2K+ 1< n< 2k
> Hashes =n
> Rehashes =2 +22+ .., +2k=2k+1_2
» Total =n +2k1 -2 <3n
* Example
> n =233, Total =33 + 64 -2 =95 <99

Case Study

« Spelling Dictionary - 30,000 words
* Goals
> Fast spell checking
> Minimal storage
« Possible solutions
> Sorted array and binary search
> Open hashing (chaining)
> Closed hashing with linear probing
* Notes
> Almost all searches are successful
> 30,000 word average 8 bytes per word, 240,000 bytes
> Pointers are 4 bytes

Storage

« Assume word are stored as strings and entries in the
arrays are pointers to the strings.

Binary search Open hashing Closed hashing

N/\ + 2N pointers

N pointers

N/\ pointers

Analysis

« Binary Search
> Storage = N pointers + words = 360,000 bytes
> Time = log,N < 15 probes in worst case
« Open hashing
> Storage = 2N + N/ A pointers + words
A =1 implies 600,000 bytes
> Time =1+ A/2 probes per access
=1 implies 1.5 probes per access
« Closed hashing
> Storage = N/ A pointers + words
A = 1/2 implies 480,000 bytes
> Time = (1/2)(1+1/(1-))) probes
A =1/2 implies 1.5 probes per access

Extendible Hashing

» Extendible hashing is a technique for storing
large data sets that do not fit in memory.
+ An alternative to B-trees

3 bits of hash value used
000 001 010 011 100 101 110 111

Splitting

000 001 010 011 100 101 110 111

In memory
(2) (2) (3) (3) 2 Pages
00001 | |01001 | | 10001 | {10101 | |11001
00011 | |01011 | |10011 | |10110 | |11011
00100 | | 01100 10111 | | 11100
00110 11110
00 01 10 11 Insert 00111
(2) (2) (2) 2)
00001 | |01001 10000 | | 11101
00011 | |01011 10001 | | 11110
00100 | |01100 10011
00110

000 001 010 011 100 101 110 111

() [©) (2) (2) (2)
00001 00100 01001 10000 | | 11101
00011 00110 01011 10001 11110

00111 01100 10011

@) @) [©) ®3)) Insert 11000
00001 01001 10001 10101 11001
00011 01011 10011 10110 11011
00100 01100 10111 11100
00110 11110
000 001 010 011 100 101 110 111

2 2 (3)) (3) 3)
00001 01001 10001 10101 11000 11100
00011 01011 10011 10110 11001 11110
00100 01100 10111 11011
00110

Fingerprints

Given a string x we want a fingerprint x” with the
properties.

> X' is short, say 128 bits

> Given x = y the probability that x’ =y’ is infintesimal (almost
zero)

> Computing x’ is very fast

MD5 - Message Digest Algorithm 5 is a recognized
standard

Applications in databases and cryptography

Fingerprint Math

Given 128 bits and N strings what is the probability that the
fingerprints of two strings coincide?

2128(2128 —1)L (2128 ~N+1)
1- (2128)N

This is essentially zero for N < 240,

Hashing Summary

* Hashing is one of the most important
data structures.

» Hashing has many applications where
operations are limited to find, insert, and
delete.

» Dynamic hash tables have good
amortized complexity.

