
1

Collision Resolution

Collision: when two keys map to the same
location in the hash table.

Two ways to resolve collisions:

1. Separate Chaining

2. Open Addressing (linear probing,
quadratic probing, double hashing)

Separate Chaining

• Separate
chaining: All keys
that map to the
same hash value
are kept in a list
(or “bucket”).

2

3

9

8

7

6

5

4

1

0
Insert:
10
22
107
12
42

Open Hashing (Chaining)

0
1
2
3
4
5
6
7
8
9

a b

d g

c

f

• h(a) = h(b) and h(d) = h(g)
• Chains may be ordered or
 unordered. Little advantage
 to ordering.

Analysis of find
• Defn: The load factor, λ, of a hash table

is the ratio: ← no. of elements

 ← table size

For separate chaining, λ = average # of
elements in a bucket

• Unsuccessful find cost:

• Successful find cost:

M

N

How big should the hash table be?

• For Separate Chaining:

Closed Hashing (Open
Addressing)

• No chaining, every key fits in the hash table.
• Probe sequence

› h(k)
› (h(k) + f(1)) mod HSize
› (h(k) + f(2)) mod HSize , …

• Insertion: Find the first probe with an empty
slot.

• Find: Find the first probe that equals the query
or is empty. Stop at HSize probe, in any case.

• Deletion: lazy deletion is needed. That is,
mark locations as deleted, if a deleted key
resides there.

2

Open Addressing

2

3

9

8

7

6

5

4

1

0

Insert:
38
19
8
109
10

• Linear Probing:
after checking
spot h(k), try spot
h(k)+1, if that is
full, try h(k)+2,
then h(k)+3, etc.

Linear Probing

f(i) = i

• Probe sequence:
 0th probe = h(k) mod TableSize

1th probe = (h(k) + 1) mod TableSize

2th probe = (h(k) + 2) mod TableSize

. . .

ith probe = (h(k) + i) mod TableSize

Terminology Alert!

“Open Hashing”

 equals

“Separate Chaining”

“Closed Hashing”

 equals

“Open Addressing”
Weiss

Linear Probing Example

0

1

2

3

4

5

6 76

76

0

1

2

3

4

5

6

93

76

93

0

1

2

3

4

5

6

93

40

76

40

0

1

2

3

4

5

6

47

93

40

76

47

0

1

2

3

4

5

6

47

93

10

40

76

10

0

1

2

3

4

5

6

47

55

93

10

40

76

55

Probes 1 1 1 3 1 3

Write pseudocode for find(k) for
Open Addressing with linear

probing
• Find(k) returns i where T(i) = k

Student Activity

Linear Probing – Clustering

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster

3

Load Factor in Linear Probing
• For any λ < 1, linear probing will find an empty slot

• Expected # of probes (for large table sizes)
› successful search:

› unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2

() 









−
+ 21

1
1

2
1

λ

()









−
+

λ1
1

1
2
1

Quadratic Probing

f(i) = i2

• Probe sequence:
 0th probe = h(k) mod TableSize

1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize
. . .
ith probe = (h(k) + i2) mod TableSize

Less likely
to encounter
Primary
Clustering

Exercise: Quadratic Probing

2

3

9

8

7

6

5

4

1

0 Insert:
89
18
49
58
79

Quadratic Probing Example

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5

But…

Quadratic Probing:
Success guarantee for λ < 1/2

• If size is prime and λ < 1/2, then quadratic probing
will find an empty slot in size/2 probes or fewer.
› show for all 0 ≤ i,j < size/2 and i ≠ j

(h(x) + i2) mod size ≠ (h(x) + j2) mod size

› by contradiction: suppose that for some i ≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size
⇒ i2 mod size = j2 mod size
⇒ (i2 - j2) mod size = 0
⇒ [(i + j)(i - j)] mod size = 0

BUT size does not divide (i-j) or (i+j)

Quadratic Probing may Fail if λ > 1/2
51 mod 7 = 2 ; i = 0
(2 + 1) mod 7 = 3; i = 1
(3 + 3) mod 7 = 6; i = 2
(6 + 5) mod 7 = 4; i = 3
(4 + 7) mod 7 = 4; i = 4
(4 + 9) mod 7 = 6; i = 5
(6 + 11) mod 7 = 3; i = 6
(3 + 13) mod 7 = 2, i = 7
…

0

1

2

3

4

5

6

16

45

59

76

51

4

Quadratic Probing: Properties

• For any λ < 1/2, quadratic probing will find an
empty slot; for bigger λ, quadratic probing may find
a slot

• Quadratic probing does not suffer from primary
clustering: keys hashing to the same area are not
bad

• But what about keys that hash to the same spot?
› Secondary Clustering!

Double Hashing

f(i) = i * g(k)
where g is a second hash function

• Probe sequence:
 0th probe = h(k) mod TableSize

1th probe = (h(k) + g(k)) mod TableSize

2th probe = (h(k) + 2*g(k)) mod TableSize

3th probe = (h(k) + 3*g(k)) mod TableSize

. . .

ith probe = (h(k) + i*g(k)) mod TableSize

Double Hashing Example

0

1

2

3

4

5

6 76

76

0

1

2

3

4

5

6

93

76

93

0

1

2

3

4

5

6

93

40

76

40

0

1

2

3

4

5

6

47

93

40

76

47

0

1

2

3

4

5

6

47

93

10

40

76

10

0

1

2

3

4

5

6

47

93

10

55

40

76

55

h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes 1 1 1 2 1 2

Resolving Collisions with Double Hashing

2

3

9

8

7

6

5

4

1

0

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:

13
28
33
147
43

Hash Functions:
 H(K) = K mod M
 H2(K) = 1 + ((K/M) mod (M-1))
 M =

Double Hashing is Safe for λ < 1

• Let h(k) = k mod p and g(k) = q – (k mod q) where 2 <
q < p and p and q are primes. The probe sequence
h(k) + ig(k) mod p probes every entry of the hash table.
 Let 0 < m < p, h = h(k), and g = g(k). We show that h+ig mod p =

m for some i. 0 < g < p, so g and p are relatively prime. By
extended Euclid’s algorithm that are s and t such that

sg + tp = 1. Choose i = (m-h)s mod p
(h + ig) mod p =
(h + (m-h)sg) mod p =
(h + (m-h)sg + (m-h)tp) mod p =
(h + (m-h)(sg + tp) mod p =
(h + (m-h)) mod p = m mod p = m

Deletion in Hashing

• Open hashing (chaining) – no problem
• Closed hashing – must do lazy deletion. Deleted keys

are marked as deleted.
› Find: done normally
› Insert: treat marked slot as an empty slot and fill it.

0

1

2

3

4

5

6

16

23

59

76

0

1

2

3

4

5

6

16

30

59

76

h(k) = k mod 7
Linear probing

Find 59

Insert 30

5

Idea: When the table gets too full, create
a bigger table (usually 2x as large) and
hash all the items from the original table
into the new table.

• When to rehash?
› half full (λ = 0.5)

› when an insertion fails

› some other threshold

• Cost of rehashing?

Rehashing Rehashing Example

• Open hashing – h1(x) = x mod 5 rehashes to
h2(x) = x mod 11.

 0 1 2 3 4

25 37 83
 52 98

λ = 1

 0 1 2 3 4 5 6 7 8 9 10

25 37 83 52 98
λ = 5/11

Rehashing Picture

• Starting with table of size 2, double when
load factor > 1.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25

hashes
rehashes

Amortized Analysis of
Rehashing

• Cost of inserting n keys is < 3n

• 2k + 1 < n < 2k+1

› Hashes = n

› Rehashes = 2 + 22 + … + 2k = 2k+1 – 2

› Total = n + 2k+1 – 2 < 3n

• Example
› n = 33, Total = 33 + 64 –2 = 95 < 99

Case Study

• Spelling Dictionary - 30,000 words
• Goals

› Fast spell checking
› Minimal storage

• Possible solutions
› Sorted array and binary search
› Open hashing (chaining)
› Closed hashing with linear probing

• Notes
› Almost all searches are successful
› 30,000 word average 8 bytes per word, 240,000 bytes
› Pointers are 4 bytes

Storage

• Assume word are stored as strings and entries in the
arrays are pointers to the strings.

Binary search Open hashing Closed hashing

N pointers
N/λ + 2N pointers

N/λ pointers

6

Analysis

• Binary Search
› Storage = N pointers + words = 360,000 bytes
› Time = log2N < 15 probes in worst case

• Open hashing
› Storage = 2N + N/ λ pointers + words
 λ = 1 implies 600,000 bytes
› Time = 1 + λ/2 probes per access
 λ = 1 implies 1.5 probes per access

• Closed hashing
› Storage = N/ λ pointers + words
 λ = 1/2 implies 480,000 bytes
› Time = (1/2)(1+1/(1-λ)) probes

 λ = 1/2 implies 1.5 probes per access

Extendible Hashing

• Extendible hashing is a technique for storing
large data sets that do not fit in memory.

• An alternative to B-trees

000 001 010 011 100 101 110 111

3 bits of hash value used

(2)
00001
00011
00100
00110

(3)
10001
10011

(3)
10101
10110
10111

(2)
11001
11011
11100
11110

(2)
01001
01011
01100

Pages

In memory

Splitting
000 001 010 011 100 101 110 111

(2)
00001
00011
00100
00110

(3)
10001
10011

(3)
10101
10110
10111

(2)
11001
11011
11100
11110

(2)
01001
01011
01100

Insert 11000

000 001 010 011 100 101 110 111

(2)
00001
00011
00100
00110

(3)
10001
10011

(3)
10101
10110
10111

(3)
11000
11001
11011

(2)
01001
01011
01100

(3)
11100
11110

Rehashing

(2)
00001
00011
00100
00110

(2)
10000
10001
10011

(2)
01001
01011
01100

(2)
11101
11110

 00 01 10 11 Insert 00111

000 001 010 011 100 101 110 111

(3)
00100
00110
00111

(2)
10000
10001
10011

(2)
01001
01011
01100

(2)
11101
11110

(3)
00001
00011

Fingerprints

• Given a string x we want a fingerprint x’ with the
properties.
› x’ is short, say 128 bits
› Given x ≠ y the probability that x’ = y’ is infintesimal (almost

zero)

› Computing x’ is very fast

• MD5 - Message Digest Algorithm 5 is a recognized
standard

• Applications in databases and cryptography

Fingerprint Math

Given 128 bits and N strings what is the probability that the
fingerprints of two strings coincide?

N128

128128128

)(2

1)N(21)(22
1

+−−
−

L

This is essentially zero for N < 240.

7

Hashing Summary

• Hashing is one of the most important
data structures.

• Hashing has many applications where
operations are limited to find, insert, and
delete.

• Dynamic hash tables have good
amortized complexity.

