
1

“Divide and Conquer”

• Very important strategy in computer science:
› Divide problem into smaller parts
› Independently solve the parts
› Combine these solutions to get overall solution

• Idea 1: Divide array into two halves,
recursively sort left and right halves, then
merge two halves  known as Mergesort

• Idea 2 : Partition array into small items and
large items, then recursively sort the two sets
 known as Quicksort

Mergesort

• Divide it in two at the midpoint

• Conquer each side in turn (by
recursively sorting)

• Merge two halves together

8 2 9 4 5 3 1 6

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

Auxiliary array

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 Auxiliary array

Auxiliary Array

• The merging requires an auxiliary array.

2 4 8 9 1 3 5 6

1 2 3 4 5 Auxiliary array

Recursive Mergesort

Mergesort(A[], T[] : integer array, left, right : integer) : {
 if left < right then
 mid := (left + right)/2;
 Mergesort(A,T,left,mid);
 Mergesort(A,T,mid+1,right);
 Merge(A,T,left,right);
}

MainMergesort(A[1..n]: integer array, n : integer) : {
 T[1..n]: integer array;
 Mergesort[A,T,1,n];
}

2

Recurring Student Activity

Merge Sort 31 16 54 4 2 17 6

Merge Sort: Complexity

Quicksort

• Quicksort uses a divide and conquer strategy,
but does not require the O(N) extra space that
MergeSort does
› Partition array into left and right sub-arrays

• the elements in left sub-array are all less than
pivot

• elements in right sub-array are all greater than
pivot

› Recursively sort left and right sub-arrays

› Concatenate left and right sub-arrays in O(1) time

“Four easy steps”

• To sort an array S
› If the number of elements in S is 0 or 1, then

return. The array is sorted.

› Pick an element v in S. This is the pivot
value.

› Partition S-{v} into two disjoint subsets, S1 =
{all values x≤v}, and S2 = {all values x≥v}.

› Return QuickSort(S1), v, QuickSort(S2)

The steps of QuickSort

13
81
92

43

65

31 57

26
75

0

S

13 8192
43 6531

5726

750S1 S2

 13 43 31 57 260

S1

81 927565

S2

13 43 31 57 260 65 81 9275S
[Weiss]

select pivot value

partition S

QuickSort(S1) and
QuickSort(S2)

Presto! S is sorted

8 1 4 9 0 3 5 2 7 6

0 1 2 3 4 5 6 7 8 9

0 1 4 9 7 3 5 2 6 8

i j

QuickSort Example

•Choose the pivot as the median of three.

•Place the pivot and the largest at the right
and the smallest at the left

3

QuickSort Example

0 1 4 9 7 3 5 2 6 8

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 9 7 3 5 2 6 8

i j

0 1 4 2 7 3 5 9 6 8

i j

i j

•Move i to the right to be larger than pivot.
•Move j to the left to be smaller than pivot.
•Swap

0 1 4 2 5 3 7 9 6 8
i j

0 1 4 2 5 3 7 9 6 8
ij

0 1 4 2 5 3 6 9 7 8
ij

S1 < pivot pivot S2 > pivot

0 1 4 2 7 3 5 9 6 8

i j

0 1 4 2 7 3 5 9 6 8
i j

0 1 4 2 5 3 7 9 6 8
i j

QuickSort Example

Recursive Quicksort

Quicksort(A[]: integer array, left,right : integer): {
pivotindex : integer;
if left + CUTOFF ≤ right then
 pivot := median3(A,left,right);
 pivotindex := Partition(A,left,right-1,pivot);
 Quicksort(A, left, pivotindex – 1);
 Quicksort(A, pivotindex + 1, right);
else
 Insertionsort(A,left,right);
}

Don’t use quicksort for small arrays.
CUTOFF = 10 is reasonable.

Recurring Student Activity

Quick Sort 31 16 54 4 2 17 6

QuickSort:
Best case complexity

QuickSort:
Worst case complexity

4

QuickSort:
Average case complexity

Turns out to be O(n log n)

See Section 7.7.5 for an idea of the proof.
Don’t need to know proof details for this course.

Features of Sorting Algorithms

• In-place
› Sorted items occupy the same space as the

original items. (No copying required, only
O(1) extra space if any.)

• Stable
› Items in input with the same value end up in

the same order as when they began.

Sort Properties

Are the following: stable? in-place?
Insertion Sort? No Yes Can Be No Yes

Selection Sort? No Yes Can Be No Yes

MergeSort? No Yes Can Be No Yes

QuickSort? No Yes Can Be No Yes

Student Activity

How fast can we sort?

• Heapsort, Mergesort, and Quicksort all
run in O(N log N) best case running time

• Can we do any better?

• No, if the basic action is a comparison.

Sorting Model
• Recall our basic assumption: we can only

compare two elements at a time
› we can only reduce the possible solution space by

half each time we make a comparison

• Suppose you are given N elements
› Assume no duplicates

• How many possible orderings can you get?
› Example: a, b, c (N = 3)

Permutations

• How many possible orderings can you get?
› Example: a, b, c (N = 3)

› (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)

› 6 orderings = 3•2•1 = 3! (ie, “3 factorial”)

› All the possible permutations of a set of 3 elements

• For N elements
› N choices for the first position, (N-1) choices for the

second position, …, (2) choices, 1 choice

› N(N-1)(N-2)…2)(1)= N! possible orderings

5

Decision Tree

a < b < c, b < c < a,
c < a < b, a < c < b,
b < a < c, c < b < a

a < b < c
c < a < b
a < c < b

b < c < a
 b < a < c
c < b < a

a < b < c
a < c < b

c < a < b

a < b < c a < c < b

b < c < a
 b < a < c

c < b < a

b < c < a b < a < c

a < b a > b

a > ca < c

b < c b > c

b < c b > c

c < a c > a

The leaves contain all the possible orderings of a, b, c

Decision Trees

• A Decision Tree is a Binary Tree such that:

› Each node = a set of orderings

• ie, the remaining solution space

› Each edge = 1 comparison

› Each leaf = 1 unique ordering

• Only 1 leaf has the ordering that is the
desired correctly sorted arrangement

Decision Trees and Sorting

• Every sorting algorithm corresponds to a
decision tree
› Finds correct leaf by choosing edges to follow

• ie, by making comparisons

› Each decision reduces the possible solution space
by one half

• Run time is ≥ maximum no. of comparisons
› maximum number of comparisons is the length of

the longest path in the decision tree, i.e. the height
of the tree

Lower bound on Height

• A binary tree of height h has at most how many leaves?

L

• A binary tree with L leaves has height at least:

h

• The decision tree has how many leaves:

• So the decision tree has height:

h

Student Activity

log(N!) is Ω(NlogN)

()

)log(
2

log
2

)2log(log
2

2
log

2

2
log)2log()1log(log

1log2log)2log()1log(log

)1()2()2()1(log)!log(

NN

N
N

N
N

N

NN

N
NNN

NNN

NNNN

Ω=

−=−≥

≥

++−+−+≥

+++−+−+=

⋅−⋅−⋅=

L

L
L

select just the
first N/2 terms

each of the selected
terms is ≥ logN/2

Ω(N log N)

• Run time of any comparison-based
sorting algorithm is Ω(N log N)

• Can we do better if we don’t use
comparisons?

6

BucketSort (aka BinSort)
If all values to be sorted are known to be
between 1 and K, create an array count of size
K, increment counts while traversing the input,
and finally output the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

5

4

3

2

1

count array

Running time to sort n items?

BucketSort Complexity: O(n+K)

• Case 1: K is a constant
› BinSort is linear time

• Case 2: K is variable
› Not simply linear time

• Case 3: K is constant but large (e.g. 232)
› ???

Fixing impracticality:
RadixSort

• Radix = “The base of a number system”
› We’ll use 10 for convenience, but could be

anything

• Idea: BucketSort on each digit,
least significant to most significant
(lsd to msd)

Bucket sort
by 1’s digit

0 1

721

2 3

3
123

4 5 6 7

537
67

8

478
38

9

9

Input data

This example uses B=10 and base 10 digits for
simplicity of demonstration. Larger bucket counts
should be used in an actual implementation.

Radix Sort Example (1st pass)

721
3

123
537
67

478
38

9

After 1st pass

478
537
9
721
3
38
123
67

Bucket sort
by 10’s digit

0 1 2 3

537
38

4 5 6 7 8 9

After 1st pass

Radix Sort Example (2nd pass)

3
9

721
123
537
38
67

478

After 2nd pass

721
3

123
537
67

478
38

9

03
09

721
123

67 478

Bucket sort
by 100’s digit

0

003
009
038
067

1

123

2 3 4

478

5

537

6 7

721

8 9

Radix Sort Example (3rd pass)

After 2nd pass After 3rd pass

3
9

38
67

123
478
537
721Invariant: after k passes the low order k

digits are sorted.

3
9

721
123
537
38
67

478

7

RadixSort
• Input:126, 328, 636, 341, 416, 131, 328

9876543210

BucketSort on lsd:

9876543210

BucketSort on next-higher digit:

9876543210

BucketSort on msd:

Student Activity

Radixsort: Complexity
• How many passes?

• How much work per pass?

• Total time?

• Conclusion?

• In practice
› RadixSort only good for large number of elements with

relatively small values
› Hard on the cache compared to MergeSort/QuickSort

Internal versus External
Sorting

• So far assumed that accessing A[i] is fast –
Array A is stored in internal memory (RAM)
› Algorithms so far are good for internal sorting

• What if A is so large that it doesn’t fit in internal
memory?
› Data on disk or tape

› Delay in accessing A[i] – e.g. need to spin disk and
move head

Internal versus External
Sorting

• Need sorting algorithms that minimize disk/tape
access time

• External sorting – Basic Idea:
› Load chunk of data into RAM, sort, store this “run”

on disk/tape
› Use the Merge routine from Mergesort to merge

runs
› Repeat until you have only one run (one sorted

chunk)
› Text gives some examples

Summary of Sorting

• Sorting choices:
› O(N2) – Bubblesort, Insertion Sort

› O(N log N) average case running time:

• Heapsort: In-place, not stable

• Mergesort: O(N) extra space, stable.

• Quicksort: claimed fastest in practice but, O(N2)
worst case. Needs extra storage for recursion.
Not stable.

› O(N) – Radix Sort: fast and stable. Not comparison
based. Not in-place.

