

- Very important strategy in computer science:
 Divide problem into smaller parts
 - > Independently solve the parts
 - > Combine these solutions to get overall solution
- Idea 1: Divide array into two halves, recursively sort left and right halves, then merge two halves → known as Mergesort
- Idea 2 : Partition array into small items and large items, then recursively sort the two sets → known as Quicksort

Recurring Student Activity

Merge Sort 31 16 54 4 2 17 6

Merge Sort: Complexity

Quicksort

- Quicksort uses a divide and conquer strategy, but does not require the O(N) extra space that MergeSort does
 - Partition array into left and right sub-arrays
 the elements in left sub-array are all less than pivot
 - elements in right sub-array are all greater than pivot
 - > Recursively sort left and right sub-arrays
 - > Concatenate left and right sub-arrays in O(1) time

"Four easy steps"

- To sort an array S
 - If the number of elements in S is 0 or 1, then return. The array is sorted.
 - > Pick an element *v* in **S**. This is the *pivot* value.
 - > Partition S-{v} into two disjoint subsets, S₁ = {all values $x \le v$ }, and S₂ = {all values $x \ge v$ }.
 - > Return QuickSort(**S**₁), v, QuickSort(**S**₂)

Recurring Student Activity

Quick Sort 31 16 54 4 2 17 6

QuickSort: Average case complexity

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof. Don't need to know proof details for this course.

Features of Sorting Algorithms

- In-place
 - > Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)
- Stable
 - > Items in input with the same value end up in the same order as when they began.

Student Activity		<u></u>	rtico				
50		ope	nies				
Are the following:	stable?		in-place?				
Insertion Sort?	No	Yes	Can Be	No	Yes		
Selection Sort?	No	Yes	Can Be	No	Yes		
MergeSort?	No	Yes	Can Be	No	Yes		
QuickSort?	No	Yes	Can Be	No	Yes		

How fast can we sort?

- · Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time
- · Can we do any better?
- No, if the basic action is a comparison.

- Recall our basic assumption: we can <u>only</u> compare two elements at a time
 - > we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements > Assume no duplicates
- · How many possible orderings can you get? > Example: a, b, c (N = 3)

Permutations

- · How many possible orderings can you get?
 - > Example: a, b, c (N = 3)
 - > (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - \rightarrow 6 orderings = 3.2.1 = 3! (ie, "3 factorial")
 - > All the possible permutations of a set of 3 elements
- For N elements
 - > N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - > N(N-1)(N-2)...2)(1)= N! possible orderings

Student A	ctivity		R	adi	xSc	ort			
BucketSo	rt on Isd	•	Input	:126, 3	328, 6	36, 34	1, 416	, 131,	328
0	1	2	3	4	5	6	7	8	9
			ato ta						
3ucketSo	rt on nex	t-higher	digit:						
BucketSo	rt on nex	t-higher	digit: 3	4	5	6	7	8	9
BucketSo	rt on nex	2 d:	digit: 3	4	5	6	7	8	9

Internal versus External Sorting

- So far assumed that accessing A[i] is fast Array A is stored in internal memory (RAM)
 Algorithms so far are good for internal sorting
- What if A is so large that it doesn't fit in internal memory?
 - > Data on disk or tape
 - Delay in accessing A[i] e.g. need to spin disk and move head

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
- External sorting Basic Idea:
- Load chunk of data into RAM, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- > Text gives some examples

Summary of Sorting

- · Sorting choices:
 - > O(N²) Bubblesort, Insertion Sort
 - $\, \rightarrow \,$ O(N log N) average case running time:
 - Heapsort: In-place, not stable
 - Mergesort: $O(N)\ extra \ space, \ stable.$
 - Quicksort: claimed fastest in practice but, $O(N^2)\ worst$ case. Needs extra storage for recursion. Not stable.
 - O(N) Radix Sort: fast and stable. Not comparison based. Not in-place.