CSE 326: Data Structures

Graphs

Neva Cherniavsky
Summer 2006

Graph... ADT?

- Not quite an ADT... operations not clear
- A formalism for representing relationships between objects Graph $\mathrm{G}=(\mathrm{v}, \mathrm{E})$
, Set of vertices:
$\mathrm{v}=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$
, Set of edges:
$E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$
where each $\mathbf{e}_{\mathbf{i}}$ connects two
vertices ($\mathrm{v}_{\mathbf{1} 1}, \mathrm{v}_{\mathbf{i} 2}$)

V = \{Han, Leia, Luke\}
$\mathrm{E}=\{($ Luke, Leia) (Han, Leia), (Leia, Han) \}

Graphs In Practice

- Web graph
, Vertices are web pages
, Edge from u to v is a link to v appears on u
- Call graph of a computer program
, Vertices are functions
, Edge from u to v is u calls v
- Task graph for a work flow
, Vertices are tasks
Edge from u to v if u must be completed before v begins

Weighted Graphs

Each edge has an associated weight or cost.

Graph Definitions

In directed graphs, edges have a specific direction:

In undirected graphs, they don't (edges are two-way):

Ex. Who is sitting next to who
v is adjacent to \mathbf{u} if ($\mathbf{u}, \mathrm{v}) \in \mathrm{E}$
Weighted Graphs
Each edge has an associated weight or cost.
Clinton $\bigcirc^{20} \bigcirc$ Mukilteo
Kingston $\bigcirc{ }^{30} \bigcirc$ Edmonds
Bremerton \bigcirc Seattle

Paths and Cycles

- A path is a list of vertices $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{\mathrm{n}}\right\}$ such that $\left(\mathbf{v}_{\mathbf{i}}\right.$, $\left.\mathbf{v}_{\mathbf{i + 1}}\right) \in \mathbf{E}$ for all $\mathbf{0} \boldsymbol{\leq i}<\mathbf{n}$.
- A cycle is a path that begins and ends at the same node.

- $p=\{$ Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle $\}$

Directed Acyclic Graphs (DAGs)

- DAGs are directed graphs program call graph with no cycles.

Trees \subset DAGs \subset Graphs

Graph Representation 2:
 Adjacency List

- A |VI-ary list (array) in which each entry stores a list (linked list) of all adjacent vertices

Runtime:
iterate over vertices? iterate over edges? iterate edges adj. to vertex? edge exists?

Trees as Graphs

- Every tree is a graph with some restrictions:
, the tree is directed
, there are no cycles (directed or undirected)
, there is a directed path
 from the root to every node

Graph Representation 1: Adjacency Matrix

\cdot A |v| x |v| array in which an element (u, v) is true if and only if there is an edge from u to v

Runtime:
iterate over vertices?
iterate over edges?
iterate edges adj. to vertex?
edge exists?
Space required?

Some Applications:
 Moving Around Washington

What's the shortest way to get from Seattle to Pullman? Edge labels:

What's the fastest way to get from Seattle to Pullman? Edge labels:

Some Applications:

Bus Routes in Downtown Seattle

If we're at 3 rd and Pine, hớw can we get to $1^{\text {st }}$ and University using Metro?

Application: Topological Sort
Given a directed graph, $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, output all the vertices in v such that no vertex is output before any other vertex with an edge to it.

Is the output unique?

Valid Topological Sorts:

Topological Sort: Take One

1. Label each vertex with its in-degree (\# of inbound edges)
2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:

Exercise

- Design the algorithm to initialize the in-degree array Assume the adjacency list representation.

Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
, Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
, Is there a path between two given vertices?
, Is the graph (weakly) connected?
- Which one:
, Uses a queue?
, Uses a stack?
, Always finds the shortest path (for unweighted graphs)?

