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CSE 326: Data Structures

Graphs

Neva Cherniavsky

Summer 2006

Graph… ADT?

• Not quite an ADT…
operations not clear

• A formalism for representing
relationships between objects
Graph G = (V,E)

› Set of vertices:
V = {v1,v2,…,vn}

› Set of edges:
E = {e1,e2,…,em}
where each ei connects two
vertices (vi1,vi2)
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Luke

V = {Han, Leia, Luke}
E = {(Luke, Leia), 
     (Han, Leia), 
     (Leia, Han)}

Graphs In Practice

•  Web graph
› Vertices are web pages
› Edge from u to v is a link to v appears on u

•  Call graph of a computer program
› Vertices are functions
› Edge from u to v is u calls v

•  Task graph for a work flow
› Vertices are tasks
› Edge from u to v if u must be completed before v

begins

Graph Definitions
In directed graphs, edges have a specific direction:

In undirected graphs, they don’t (edges are two-way):

v is adjacent to u if (u,v) ∈ E

Han

Leia

Luke

Han

Leia

Luke
Ex. Who is sitting

next to who

Weighted Graphs
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Each edge has an associated weight or cost.

Paths and Cycles
• A path is a list of vertices {v1, v2, …, vn} such that (vi,

vi+1) ∈ E for all 0 ≤ i < n.

• A cycle is a path that begins and ends at the same
node.
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San Francisco
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Chicago

Salt Lake City

• p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}
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Path Length and Cost

• Path length: the number of edges in the path

• Path cost: the sum of the costs of each edge
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length(p) = 5 cost(p) = 11.5

Trees as Graphs

• Every tree is a graph
with some restrictions:
› the tree is directed

› there are no cycles
(directed or undirected)

› there is a directed path
from the root to every
node
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Directed Acyclic Graphs
(DAGs)

• DAGs are
directed graphs
with no cycles. main()

add()

access()

mult()

read()

Trees ⊂ DAGs ⊂ Graphs

program call graph

Graph Representation 1:
Adjacency Matrix

•A |V| x |V| array in which an element (u, v)
is true if and only if there is an edge from u to v
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Han Luke Leia
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Runtime:
iterate over vertices?
iterate over edges?
iterate edges adj. to vertex?
edge exists?

Space required?

Runtime:
iterate over vertices?  
iterate over edges?   
iterate edges adj. to vertex? 
edge exists? 

Graph Representation 2:
Adjacency List

• A |V|-ary list (array) in which each entry stores
a list (linked list) of all adjacent vertices
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Han

Luke

Leia

Space required?
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Han

Some Applications:
Moving Around Washington

What’s the shortest way to get from Seattle to Pullman?
Edge labels:
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Some Applications:
Moving Around Washington

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

Some Applications:
Bus Routes in Downtown Seattle

If we’re at 3rd and Pine, how can we get to
1st and University using Metro?

Application: Topological Sort
Given a directed graph, G = (V,E), output all the

vertices in V such that no vertex is output before any
other vertex with an edge to it.

CSE 142 CSE 143

CSE 321

CSE 341

CSE 378

CSE 326

CSE 370

CSE 403

CSE 421

CSE 467

CSE 451

CSE 322

Is the output unique?

Another example

check in
airport

call
taxi

taxi to
airport

reserve
flight

pack
bags

take
flight

locate
gate
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Valid Topological Sorts:

Topological Sort: Take One

1. Label each vertex with its in-degree (# of
inbound edges)

2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:
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void Graph::topsort(){
  Vertex v, w;

labelEachVertexWithItsIn-degree();

for (int counter=0; counter < NUM_VERTICES;
counter++){

    v = findNewVertexOfDegreeZero();

    v.topologicalNum = counter;
    for each w adjacent to v
      w.indegree--;
  }
}

Time?

Time?

Time?

Where is the bottleneck?

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree

zero vertices
3. While Q not empty

a. v = Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v
c. If new in-degree of any such vertex u is zero

Q.enqueue(u)

Runtime:

Note: could use a stack, list, set,
          box, … instead of a queue
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Example
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Example
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Exercise

• Design the algorithm to initialize the in-degree array.
Assume the adjacency list representation.

Graph Connectivity
Undirected graphs are connected if there is a path between

any two vertices

Directed graphs are strongly connected if there is a path from
any one vertex to any other

Directed graphs are weakly connected if there is a path
between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

Graph Traversals

• Breadth-first search (and depth-first search) work
for arbitrary (directed or undirected) graphs - not
just mazes!
› Must mark visited vertices so you do not go into an

infinite loop!

• Either can be used to determine connectivity:
› Is there a path between two given vertices?
› Is the graph (weakly) connected?

• Which one:
› Uses a queue?
› Uses a stack?
› Always finds the shortest path (for unweighted graphs)?


