CSE 326: Data Structures

Graphs

Neva Cherniavsky
Summer 2006

Graph... ADT?

« Not quite an ADT...
operations not clear

Han
« A formalism for representing
relationships between objects
GraphG = (V,E) Leia

> Set of vertices:

Vo= (v, vy, Vo)

Set of edges:

E = {e;,e;,..,e,}

where each e; connects two
vertices (v;,,v;,)

=

{ (Luke, Leia),
(Han, Leia),
(Leia, Han)}

Graphs In Practice

* Web graph

» Vertices are web pages

> Edge from u to v is a link to v appears on u
+ Call graph of a computer program

> Vertices are functions

> Edge from u to vis u calls v
» Task graph for a work flow

> Vertices are tasks

» Edge from u to v if u must be completed before v
begins

Graph Definitions

In directed graphs, edges have a specific direction:

CQ Luke
Leia

In undirected graphs, they don’t (edges are two-way):

Han

Han

Leia

v is adjacenttouif (u,v) € E

Weighted Graphs

Each edge has an associated weight or cost.

Clinton 20
Mukilteo

Kingston O‘% Edmonds

Bainbridge 35 Seattle

60
Bremerton

Paths and Cycles

« A path is a list of vertices {v,, vy, ..., v} such that (v,
Vi) EEforall0<i<n.

« A cycle is a path that begins and ends at the same
node.

Chicago
Seattl€]

San Francisco

Dallas
« p = {Seattle, Salt Lake City, Chicago, Dallas, San Francisco, Seattle}

V = {Han, Leia, Luke}

Path Length and Cost

* Path length: the number of edges in the path
* Path cost: the sum of the costs of each edge

Chicago

Salt Lake City

San Francisco

Dallas
length(p) =5 cost(p) =11.5

Trees as Graphs

« Every tree is a graph (A)
with some restrictions:
» the tree is directed @ o
» there are no cycles
(directed or undirected) ®© ®6

» there is a directed path 6
from the root to every
node

Directed Acyclic Graphs

(DAGS)
* DAGs are
directed graphs program call graph
with no cycles. main)
mult ()
add ()
access () read()

Trees C DAGs C Graphs

Graph Representation T:
Adjacency Matrix

*A |v| x |v| arrayin which an element (u, v)
is true if and only if there is an edge from u to v

Han Luke .
Han Luke Leia
L

ela Han
Runt/me: . Luke
iterate over vertices?
iterate over edges? Leia

iterate edges adj. to vertex?

ists?
edge exists? Space required?

Graph Representation 2:
Adjacency List

* A |v|-ary list (array) in which each entry stores
a list (linked list) of all adjacent vertices

Ha C)Luke
Han| 3| Leia
eia
Luke| — | Leia
Runt/me: _ Leial —»
iterate over vertices?

iterate over edges?
iterate edges adj. to vertex?

edge exists? Space required?

Some Applications:
Moving Around Washington

Bellingham

Seattle Wenatchee Spokane

Enumelaw l i

Yakima

Pullman

Richland

WVancouver

What’s the shortest way to get from Seattle to Pullman?
Edge labels:

Some Applications:
Moving Around Washington

Bellingham

Wenatchee Spokane

Seattle

Enumeclaw I i

Richland Pullman

Yakima

WVancouver

What’s the fastest way to get from Seattle to Pullman?
Edge labels:

Some Applications:
Bus Routes in Downtown Seattle

NaEEn

Ist

N
>
o
auld }—T%
Mld
uolun o~
ISIDAIUN [
eoouss O —

If we're at 37 and Pine, how can we get to
1st and University using Metro?

3

Application: Topological Sort

Given a directed graph, G = (v,E), output all the
vertices in v such that no vertex is output before any
other vertex with an edge to it.

Is the output unique?

Another example

Valid Topological Sorts:

= Topological Sort: Take One

1. Label each vertex with its in-degree (# of
inbound edges)
2. While there are vertices remaining:
a. Choose a vertex v of in-degree zero; output v
b. Reduce the in-degree of all vertices adjacent to v
c. Remove v from the list of vertices

Runtime:

void Graph::topsort() {
Vertex v, w;

Time?
labelEachVertexWithItsIn-degree () ;

for (int counter=0; counter < NUM VERTICES;
counter++) {
v = findNewVertexOfDegreeZero () ;
Time?
v.topologicalNum = counter;
for each w adjacent to v)
w.indegree--; Time?

Where is the bottleneck?

Topological Sort: Take Two

1. Label each vertex with its in-degree
2. Initialize a queue Q to contain all in-degree
zero vertices
3. While Q not empty
a. v = Q.dequeue; output v
b. Reduce the in-degree of all vertices adjacent to v

c. If new in-degree of any such vertex u is zero
Q.enqueue(u)

Note: could use a stack, list, set,

H;

[~]
[=]

Queue=125 o] {e] |
Output = BHESHESEE

~NoUhwWN
[~]
L]

m
=]

box, ... instead of a queue
Runtime:
Example
In-degree
1 20 2

4 1 3]
; & 2 LG1]
&), 3 G
4 0
5 [3{e]]

Queue =1 2
Output=5 6 [-] d{7] |
7

ninin
=] <] [o

Queue = 1 o] {e] |
Output=52 Tl 7] |

~NoUhwWN
[~]
L]

m
=]

Example

3 In-degree

a1 o360
& & 2 360
&), ' 3

4 2]
Queue =6 5 [H{e]]
Output=521 6 E
7

nlm
[=][=][=]

[~][=]

Queue =37
Output=5216

mimin
[=][][=]
[~]

Example

3 In-degree

a1 31
¢ & 2 L3O
&), 3 [=3-G]

4 [
Queue = 3 S EEHED
Output=52167 6 [=] 7]]
7 [«]

H;

3

i
H('J
[~]

Queue =4

Exercise

« Design the algorithm to initialize the in-degree array.
Assume the adjacency list representation.

Graph Connectivity

Undirected graphs are connected if there is a path between
any two vertices

:

Directed graphs are strongly connected if there is a path from
any one vertex to any other

Directed graphs are weakly connected if there is a path
between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

At

Graph Traversals

» Breadth-first search (and depth-first search) work
for arbitrary (directed or undirected) graphs - not
just mazes!

> Must mark visited vertices so you do not go into an
infinite loop!

» Either can be used to determine connectivity:

» s there a path between two given vertices?
» Is the graph (weakly) connected?
* Which one:
> Uses a queue?
> Uses a stack?
> Always finds the shortest path (for unweighted graphs)?

