

```
void Graph::topsort()
    Queue q(NUM_VERTICES); int counter = 0; Vertex v, w;
    labelEachVertexWithItsIn-degree();
    q.makeEmpty();
    for each vertex v
        if (v.indegree == 0) Time?
            q.enqueue (v) ;
    while (!q.isEmpty()){
        v = q. dequeue();
        v.topologicalNum = ++counter;
        for each w adjacent to v Time?
            if (--w.indegree == 0)
                q. enqueue (w) ;
    }
}
Runtime:
```


Graph Traversals

- Breadth-first search (and depth-first search) work for arbitrary (directed or undirected) graphs - not just mazes!
, Must mark visited vertices so you do not go into an infinite loop!
- Either can be used to determine connectivity:
, Is there a path between two given vertices?
, Is the graph (weakly) connected?
- Which one:
, Uses a queue?
, Uses a stack?
, Always finds the shortest path (for unweighted graphs)?

Announcements

- Project 3 code due tomorrow
- Project 3 readme and benchmarking due next week

The Shortest Path Problem

Given a graph G, edge costs $c_{i, j}$, and vertices s and t in G, find the shortest path from s to t.

For a path $p=v_{0} v_{1} v_{2} \ldots v_{k}$
, unweighted length of path $p=k \quad$ (a.k.a. length)
, weighted length of path $p=\sum_{i=0 . k-1} c_{i, i+1}$ (a.k.a cost)

Path length equals path cost when ?

Single Source Shortest Paths (SSSP)

Given a graph G, edge costs $c_{i, j}$, and vertex s, find the shortest paths from s to all vertices in G .
, Is this harder or easier than the previous problem?

All Pairs Shortest Paths (APSP)

Given a graph G and edge costs $c_{i, j}$, find the shortest paths between all pairs of vertices in G .
, Is this harder or easier than SSSP?
, Could we use SSSP as a subroutine to solve this?

Variations of SSSP
, Weighted vs. unweighted , Directed vs undirected , Cyclic vs. acyclic , Positive weights only vs. negative weights allowed , Shortest path vs. longest path , ...

Applications

, Network routing
, Driving directions
Cheap flight tickets
, Critical paths in project management (see textbook)
) ...

SSSP: Unweighted Version

void Graph:: unweighted (Vertex s) \{
Queue q(NUM_VERTICES);
Vertex v, w;
q. enqueue (s) ;
s.dist $=0$
while (!q.isEmpty()) \{
$\mathrm{v}=\mathrm{q}$. dequeue();
for each w adjacent to v each edge examined if (\mathbf{w}.dist $==$ INFINITY) $\left\{\quad \begin{array}{l}\text { each edge examined } \\ \text { at most once }- \text { if adjacency }\end{array}\right.$ w.dist $=$ v.dist +1 ; lists are used w. path $=\mathrm{v}$;
q. enqueue (w)
\}
\}
\}

total running time: $\mathrm{O}(\quad)$

Dijkstra's Algorithm: Idea

Dijkstra's Algorithm: Idea

Similar to breadth-first search, but uses a heap instead of a queue:

- Always select (expand) the vertex that has a lowest-cost path to the start vertex

Correctly handles the case where the lowest-cost (shortest) path to a vertex is not the one with fewest edges

Important Features
Once a vertex is removed from the
head, the cost of the shortest path to
that node is known
While a vertex is still in the heap,
another shorter path to it might still
be found
The shortest path itself can found by
following the backward pointers
stored in node.previous

Dijkstra's Algorithm:

Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph Select an unknown node b with the lowest cost Mark b as known
For each node a adjacent to b
a 's cost $=\min (a$'s old cost, b 's cost $+\operatorname{cost}$ of $(b$,

Dijkstra's Algorithm in Action

Dijkstra's Algorithm in Action

vertex	visited	cost
A	x	0
B		$?$
C	x	$?$
D		$?$
E		$? ?$
F		$?!$
G		$?!$
H		$!$

Dijkstra's Algorithm in Action

Dijkstra's Algorithm in Action

Dijkstra's Algorithm in Action

Dijkstra's Algorithm in Action

$$
\begin{aligned}
& \text { A) }
\end{aligned}
$$

Dijkstra's Algorithm in Action

Dijkstra's Alg: Implementation

Initialize the cost of each node to ∞

Initialize the cost of the source to 0
While there are unknown nodes left in the graph
Select the unknown node b with the lowest cost

Mark b as known

For each node a adjacent to b
$a ' s$ cost $=\min (a ' s$ old cost, b 's cost $+\operatorname{cost}$ of $(b, a))$

What data structures should we use?

Running time?

Dijkstra's Algorithm: a Greedy Algorithm

Greedy algorithms always make choices that currently seem the best
, Short-sighted - no consideration of longterm or global issues
, Locally optimal - does not always mean globally optimal!!

Correctness: The Cloud Proof

How does Dijkstra's decide which vertex to add to the Known set next???

- If path to \mathbf{B} is shortest, path to \mathbf{w} must be at least as long
(or else we would have picked w as the next vertex)
- So any path through \mathbf{w} to B cannot be any shorter!

Correctness of Dijkstra's

Intuition for correctness:
, shortest path from source vertex to itself is 0
, cost of going to adjacent nodes is at most edge weights
, cheapest of these must be shortest path to that node
) update paths for new node and continue picking cheapest path

Correctness: Inside the Cloud

Prove by induction on \# of nodes in the cloud:

Initial cloud is just the source with shortest path 0
Assume: Everything inside the cloud has the correct shortest path
Inductive step: Only when we prove the shortest path to some node \boldsymbol{v} (which is not in the cloud) is correct, we add it to the cloud

When does Dijkstra's algorithm not work?

Dijkstra's vs BFS

At each step:

1) Pick closest unknown vertex
2) Add it to finished vertices
3) Update distances

Dijkstra's Algorithm
At each step:

1) Pick vertex from queue
2) Add it to visited vertices
3) Update queue with neighbors

Some Similarities

Dijkstra's Algorithm: Summary

- Classic algorithm for solving SSSP in weighted graphs without negative weights
- A greedy algorithm (irrevocably makes decisions without considering future consequences)
- Intuition for correctness:
, shortest path from source vertex to itself is 0
, cost of going to adjacent nodes is at most edge weights
, cheapest of these must be shortest path to that node
update paths for new node and continue picking cheapest path

