
1

CSE 326: Data Structures

Shortest Path

Neva Cherniavsky

Summer 2006

Announcements

• Project 3 code due tomorrow

• Project 3 readme and benchmarking due
next week

void Graph::topsort(){
  Queue q(NUM_VERTICES);  int counter = 0; Vertex v, w;

labelEachVertexWithItsIn-degree();

  q.makeEmpty();
  for each vertex v
    if (v.indegree == 0)
      q.enqueue(v);

  while (!q.isEmpty()){
    v = q.dequeue();
    v.topologicalNum = ++counter;
    for each w adjacent to v
      if (--w.indegree == 0)
        q.enqueue(w);
  }
}

Runtime:

Time?

Time?

Time?

Graph Connectivity
Undirected graphs are connected if there is a path between

any two vertices

Directed graphs are strongly connected if there is a path from
any one vertex to any other

Directed graphs are weakly connected if there is a path
between any two vertices, ignoring direction

A complete graph has an edge between every pair of vertices

Graph Traversals

• Breadth-first search (and depth-first search) work
for arbitrary (directed or undirected) graphs - not
just mazes!
› Must mark visited vertices so you do not go into an

infinite loop!

• Either can be used to determine connectivity:
› Is there a path between two given vertices?
› Is the graph (weakly) connected?

• Which one:
› Uses a queue?
› Uses a stack?
› Always finds the shortest path (for unweighted graphs)?

The Shortest Path Problem

Given a graph G, edge costs ci,j, and vertices s and t in G,
find the shortest path from s to t.

For a path p = v0 v1 v2 … vk

› unweighted length of path p = k            (a.k.a. length)

› weighted length of path p = ∑i=0..k-1 ci,i+1    (a.k.a cost)

Path length equals path cost when ?



2

Single Source Shortest Paths
(SSSP)

Given a graph G, edge costs ci,j, and vertex
s, find the shortest paths from s to all
vertices in G.

› Is this harder or easier than the previous
problem?

All Pairs Shortest Paths (APSP)
Given a graph G and edge costs ci,j, find the shortest paths
between all pairs of vertices in G.

› Is this harder or easier than SSSP?

› Could we use SSSP as a subroutine to solve this?

Variations of SSSP

› Weighted vs. unweighted

› Directed vs undirected

› Cyclic vs. acyclic

› Positive weights only vs. negative weights
allowed

› Shortest path vs. longest path

› …

Applications

› Network routing

› Driving directions

› Cheap flight tickets

› Critical paths in project management
(see textbook)

› …

SSSP: Unweighted Version

Ideas?

void Graph::unweighted (Vertex s){
  Queue q(NUM_VERTICES);
  Vertex v, w;
  q.enqueue(s);
  s.dist = 0;

  while (!q.isEmpty()){
    v = q.dequeue();
    for each w adjacent to v
      if (w.dist == INFINITY){
        w.dist = v.dist + 1;
        w.path = v;
        q.enqueue(w);
      }
    }
  }

each edge examined
at most once – if adjacency
lists are used

each vertex enqueued
at most once

total running time: O(                  )



3

v3

v6

v1

v2 v4

v5

v0s

pathDistV

v0

v6

v5

v4

v3

v2

v1

Student Activity

Queue

Weighted SSSP:
The Quest For Food

Vending Machine in EE1

ALLEN
HUB

Delfino’s

Ben & Jerry’s
Neelam’sCedars

Coke Closet

Home

Schultzy’s

Parent’s Home

Café Allegro

10The Ave

U Village

350

375

40

25

35
15

25

15,356

35

285
75

70
365

350

Can we calculate shortest distance to all nodes from Allen Center?

Dijkstra, Edsger Wybe

Legendary figure in computer science; was a
professor at University of Texas.

Supported teaching introductory computer
courses without computers (pencil and paper
programming)

Supposedly wouldn’t (until very late in life)
read his e-mail; so, his staff had to print out
messages and put them in his box.

E.W. Dijkstra (1930-2002)

1972 Turning Award Winner, 
Programming Languages, semaphores, and … 

Dijkstra’s Algorithm: Idea

Adapt BFS to handle
weighted graphs

Two kinds of vertices:
› Finished or known

vertices
• Shortest distance

has been computed
› Unknown vertices

• Have tentative
distance

Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown

vertex

2) Add it to known
vertices

3) Update distances

Similar to breadth-first search, but
uses a heap instead of a queue:

• Always select (expand) the vertex that
has a lowest-cost path to the start
vertex

Correctly handles the case where the
lowest-cost (shortest) path to a
vertex is not the one with fewest
edges

Dijkstra’s Algorithm: IdeaDijkstra’s Algorithm: Idea



4

Important FeaturesImportant Features

Once a vertex is removed from the
head, the cost of the shortest path to
that node is known

While a vertex is still in the heap,
another shorter path to it might still
be found

The shortest path itself can found by
following the backward pointers
stored in node.previous

Dijkstra’s Algorithm:
Pseudocode

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b

a’s cost = min(a’s old cost,  b’s cost + cost of (b,
a))

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3
10

11

1
1

9
4

2

7

vertex visited cost
A 0

B ??

C ??

D ??

E ??

F ??

G ??

H ??

0 ∞ ∞ ∞

∞

∞

∞

∞

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3
10

11

1
1

9
4

2

7

vertex visited cost
A x 0

B ?

C ?

D ?

E ??

F ??

G ??

H ??

0 2 ∞ ∞

∞

∞

1

4

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3
10

11

1
1

9
4

2

7

vertex visited cost
A x 0

B ?

C x ?

D ?

E ??

F ??

G ??

H ??

0 2 ∞ ∞

∞

12

1

4

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3
10

11

1
1

9
4

2

7

vertex visited cost
A x 0

B x ?

C x ?

D ?

E ??

F ?

G ??

H ??

0 2 4 ∞

∞

12

1

4



5

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3
10

11

1
1

9
4

2

7

vertex visited cost
A x 0

B x ?

C x ?

D x ?

E ??

F x ?

G ??

H ?

0 2 4 7

∞

12

1

4

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3
10

11

1
1

9
4

2

7

vertex visited cost
A x 0

B x ?

C x ?

D x ?

E ??

F x ?

G ?

H x ?

0 2 4 7

8

12

1

4

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3
10

11

1
1

9
4

2

7

vertex visited cost
A x 0

B x ?

C x ?

D x ?

E ??

F x ?

G x ?

H x ?

0 2 4 7

8

11

1

4

Dijkstra’s Algorithm in Action

A

C

B

D

F H

G

E

2 2 3

2
1

1

3
10

11

1
1

9
4

2

7

vertex visited cost
A x 0

B x ?

C x ?

D x ?

E x ??

F x ?

G x ?

H x ?

0 2 4 7

8

11

1

4

v3

v6

v1

v2 v4

v5

v0s

1

2

2

2

1

1 1

5 3

5

6

10

pathDistKnownV

v0

v6

v5

v4

v3

v2

v1

Student Activity

Dijkstra’s Alg: Implementation

Initialize the cost of each node to ∞

Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select the unknown node b with the lowest cost

Mark b as known

For each node a adjacent to b

a’s cost = min(a’s old cost,  b’s cost + cost of (b, a))

What data structures should we use?

Running time?



6

Dijkstra’s Algorithm: a Greedy
Algorithm

Greedy algorithms always make choices that
currently seem the best

› Short-sighted – no consideration of long-
term or global issues

› Locally optimal - does not always mean
globally optimal!!

Correctness of Dijkstra’s

Intuition for correctness:
› shortest path from source vertex to itself is 0

› cost of going to adjacent nodes is at most
edge weights

› cheapest of these must be shortest path to
that node

› update paths for new node and continue
picking cheapest path

The Known
Cloud

B

Next shortest path from 
inside the known cloud

W

Better path
to B?  No!

Correctness: The Cloud Proof

How does Dijkstra’s decide which vertex to add to the Known set next???

• If path to B is shortest, path to W must be at least as long
(or else we would have picked W as the next vertex)

• So any path through W to B cannot be any shorter!

Source

Correctness: Inside the Cloud

Prove by induction on # of nodes in the
cloud:

Initial cloud is just the source with shortest path
0

Assume: Everything inside the cloud has the
correct shortest path

Inductive step: Only when we prove the
shortest path to some node v (which is not in
the cloud) is correct, we add it to the cloud

When does Dijkstra’s algorithm not work?

The Trouble with
Negative Weight Cycles

A B

C D

E

2
10

1-5

2

What’s the shortest path from A to E?

Problem?

Dijkstra’s vs BFS
At each step:

1) Pick closest unknown
vertex

2) Add it to finished
vertices

3) Update distances

Dijkstra’s Algorithm

At each step:

1) Pick vertex from queue

2) Add it to visited vertices

3) Update queue with
neighbors

Breadth-first Search

Some Similarities:



7

Dijkstra’s Algorithm: Summary

• Classic algorithm for solving SSSP in weighted graphs
without negative weights

• A greedy algorithm (irrevocably makes decisions without
considering future consequences)

• Intuition for correctness:
› shortest path from source vertex to itself is 0
› cost of going to adjacent nodes is at most edge weights
› cheapest of these must be shortest path to that node
› update paths for new node and continue picking cheapest path


