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Graph Search
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Graph Search

• Many problems in computer science correspond
to searching for a path in a graph, given a start
node and goal criteria

› Route planning – Mapquest
› Packet-switching
› VLSI layout
› 6-degrees of Kevin Bacon
› Program synthesis
› Speech recognition

• We’ll discuss these last two later…

General Graph Search Algorithm

• Search( Start, Goal_test, Criteria)
• insert(Start, Open);
• repeat
• if (empty(Open)) then return fail;
• select Node from Open using Criteria;
• if (Goal_test(Node)) then return Node;
• for each Child of node do
• if (Child not already visited) then Insert( Child, Open );
• Mark Node as visited;
•   end

Open – some data structure (e.g., stack, queue, heap)

Criteria – some method for removing an element from Open

Depth-First Graph Search

• DFS( Start, Goal_test)
• push(Start, Open);
• repeat
• if (empty(Open)) then return fail;
• Node := pop(Open);
• if (Goal_test(Node)) then return Node;
• for each Child of node do
• if (Child not already visited) then push(Child, Open);
• Mark Node as visited;
•   end

Open – Stack

Criteria – Pop

Breadth-First Graph Search

• BFS( Start, Goal_test)
• enqueue(Start, Open);
• repeat
• if (empty(Open)) then return fail;
• Node := dequeue(Open);
• if (Goal_test(Node)) then return Node;
• for each Child of node do
• if (Child not already visited) then enqueue(Child,

Open);
• Mark Node as visited;
•   end

Open – Queue

Criteria – Dequeue (FIFO)

Two Models

1. Standard Model: Graph given explicitly
with n vertices and e edges.
> Search is O(n + e) time in adjacency list

representation
2. AI Model: Graph generated on the fly.

> Time for search need not visit every vertex.
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Planning Example
• A huge graph may be implicitly specified by rules for

generating it on-the-fly
• Blocks world:

› vertex = relative positions of all blocks
› edge = robot arm stacks one block

stack(blue,red)

stack(green,red)

stack(green,blue)
stack(blue,table)

stack(green,blue)

AI Comparison: DFS versus
BFS

• Depth-first search
› Does not always find shortest paths
› Must be careful to mark visited vertices, or you
could go into an infinite loop if there is a cycle

• Breadth-first search
› Always finds shortest paths – optimal solutions
› Marking visited nodes can improve efficiency, but
even without doing so search is guaranteed to
terminate

Is BFS always preferable?

DFS Space Requirements

• Assume:
› Longest path in graph is length d

› Highest number of out-edges is k

• DFS stack grows at most to size ??

• For k=10, d=15, size is ??

BFS Space Requirements

• Assume
› Distance from start to a goal is d

› Highest number of out edges is k BFS

• Queue could grow to size
› For k=10, d=15, size is ???

Conclusion

• In the AI Model, DFS is hugely more
memory efficient, if we can limit the
maximum path length to some fixed d.
› If we knew the distance from the start to the

goal in advance, we can just not add any
children to stack after level d

› But what if we don’t know d in advance?

Problem: Large Graphs

•  It is expensive to find optimal paths in
large graphs, using BFS or Dijkstra’s
algorithm (for weighted graphs)

•  How can we search large graphs
efficiently by using “commonsense” about
which direction looks most promising?
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Best-First Search

• The Manhattan distance (Δ x+ Δ y) is an
estimate of the distance to the goal
› It is a search heuristic

•  Best-First Search
› Order nodes in priority to minimize estimated

distance to the goal

•  Compare: BFS / Dijkstra
› Order nodes in priority to minimize distance

from the start

Best-First Search

• Best_First_Search( Start, Goal_test)
• insert(Start, h(Start), heap);
• repeat
• if (empty(heap)) then return fail;
• Node := deleteMin(heap);
• if (Goal_test(Node)) then return Node;
• for each Child of node do
• if (Child not already visited) then
• insert(Child, h(Child),heap);
• end
• Mark Node as visited;
•   end

Open – Heap (priority queue)
Criteria – Smallest key (highest priority)
h(n) – heuristic estimate of distance from n to closest goal

Obstacles

• Best-FS eventually will expand
vertex to get back on the right track
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Improving Best-First

• Best-first is often tremendously faster
than BFS/Dijkstra, but might stop with a
non-optimal solution

• How can it be modified to be (almost)
as fast, but guaranteed to find optimal
solutions?

• A* - Hart, Nilsson, Raphael 1968
› One of the first significant algorithms

developed in AI
› Widely used in many applications

A*

• Exactly like Best-first search, but using a
different criteria for the priority queue:

• minimize  (distance from start) +
   (estimated distance to goal)

• priority f(n) = g(n) + h(n)
f(n) = priority of a node
g(n) = true distance from start
h(n) = heuristic distance to goal

Optimality of A*

• Suppose the estimated distance is always
less than or equal to the true distance to the
goal
› heuristic is a lower bound

• Then:  when the goal is removed from the
priority queue, we are guaranteed to have
found a shortest path!

• Everything else has a higher estimated cost

A* in Action
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Applications of A*: Planning
• A huge graph may be implicitly specified by rules for

generating it on-the-fly
• Blocks world:

› vertex = relative positions of all blocks
› edge = robot arm stacks one block

stack(blue,red)

stack(green,red)

stack(green,blue)
stack(blue,table)

stack(green,blue)

Blocks World

• Blocks world:
› distance = number of stacks to perform

› heuristic lower bound = number of blocks out
of place

# out of place = 2,   true distance to goal = 3
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Application of A*: Speech
Recognition

• (Simplified) Problem:
› System hears a sequence of 3 words

› It is unsure about what it heard
• For each word, it has a set of possible “guesses”

• E.g.: Word 1 is one of { “hi”, “high”, “I” }

› What is the most likely sentence it heard?

Speech Recognition as
Shortest Path

• Convert to a shortest-path problem:
› Utterance is a “layered” DAG

› Begins with a special dummy “start” node

› Next: A layer of nodes for each word position, one
node for each word choice

› Edges between every node in layer i to every node
in layer i+1
• Cost of an edge is smaller if the pair of words frequently

occur together in real speech
– Technically: - log probability of co-occurrence

› Finally: a dummy “end” node

› Find shortest path from start to end node
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Summary: Graph Search

• Depth First
› Little memory required
› Might find non-optimal path

• Breadth First
› Much memory required
› Always finds optimal path

• Dijskstra’s Short Path Algorithm
› Like BFS for weighted graphs

• Best First
› Can visit fewer nodes
› Might find non-optimal path

• A*
› Can visit fewer nodes than BFS or Dijkstra
› Optimal if heuristic estimate is a lower-bound


