

Vertex cover

- Set of vertices so that each edge is "covered"

Vertex cover of size 4

Outline: Day 2

- We've seen that there are a bunch of problems that seem to be hard.
- Today we'll see how these problems relate to one another.
- Def: P_{1} is reducible to P_{2} if there is a conversion from an instance X of P_{1} to an instance Y of P_{2} such that P_{1} is yes for X iff P_{2} is yes for Y. P_{2} is yos Y .

k-Clique problem

- Is there a clique of size k in the graph?

How are they related?

- How might we reduce clique to vertex cover?
- That is, given a clique problem (G, k), how can we turn it into a vertex cover problem?
- Once we do this reduction, we know we can always solve vertex cover given solution to clique!

Clique to Vertex Cover

- We can reduce Clique to Vertex Cover.
- Given an input (G, k) to Clique:
, Build graph G complement
, Let $\mathrm{k}^{\prime}=\mathrm{n}-\mathrm{k}$
- Vertex Cover is "as hard as" Clique.

\rightarrow

- If G has a k Clique then G^{\prime} has a k^{\prime} cover:
, Let C be the clique of size k . Let the cover be V-C. Then clearly every edge outside C is covered, and in G' there are no edges in C .
, Size is $n-k$

TSP

- Travelling Salesman Problem:
, Given complete weighted graph G, integer k.
, Is there a cycle that visits all vertices with cost $<=k$?
- One of the canonical problems.
- Note difference from Hamiltonian cycle: graph is complete, and we care about weight.

Hamiltonian Cycle to TSP

- We can reduce Hamiltonian Cycle to TSP.
- Given graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$:
, Construct complete graph G^{\prime} on N vertices with edge weights: 1 if (u, v) in $E, 2$ otherwise.
, Let $\mathrm{k}=\mathrm{N}$.
- TSP is "as hard as" Hamiltonian cycle.

Proof

- If G has a Hamiltonian Cycle then G^{\prime} has a tour of weight N.
, The cycle is the tour, since there are N edges of weight 1
- If G^{\prime} has a tour of weight N , then G has a Hamiltonian Cycle.
, The tour is the cycle, since it must contain N edges, each edge must weigh 1 , and thus must have been in original graph

The reduction

- Given a directed graph G, want to find Ham. Cycle
- Convert to Longest path
, Pick any node as start vertex s.
> Create a new node t. For every edge (u, s), add an edge (u, t). Let $\mathrm{k}=\mathrm{N}$.
- Longest Path is "as hard as" Ham. Cycle

NP-completeness

- We've seen that there are seemingly hard problems. That's kind of interesting.
- The really interesting part: A large class of these are equivalent. Solving one would give a solution for all of them!

Ham. Cycle to Longest Path

- Recall, Longest Path: Given directed graph G, start node s, and integer k. Is there a simple path from s of length >= k?
- We'll use Directed Hamiltonian Cycle.
- If G has a Ham. Cycle, then G' has a path of length k from s .
, Follow the cycle starting at s , at the last step go to t instead of s.
- If G' has a path of length k from s, then G has a Ham. Cycle.
, Path must have hit every node exactly once, and last step in path could have formed cycle in G .

More on NP-completeness

- The pairs I picked weren't important. There is a large class of problems, called NP-complete, such that any one can be reduced to any other.
- So given an algorithm for any NP-complete problem, all the others can be solved.
- Conversely, if we can prove there is no efficient algorithm for one, then there are no efficient algorithms for any.

NP-Complete Problems

- The "hardest" problems in NP are called NP. complete
, If any NP-complete problem is in P , then all of NP is in P
- Examples:
, Hamiltonian circuit
, Traveling salesman: find the shortest path that visits all nodes in a weighted graph (okay to repeat edges \& nodes)
, Graph coloring: can the vertices of a graph be colored using K colors, such that no two adjacent vertices have the same color?
, Crossword puzzle construction: can a given set of 2 N words, each of length N, be arranged in an $N \times N$ crossword puzzle?

P, NP, and Exponential Time Problems

- All currently known algorithms for NP-complete problems run in exponential worst case time
, Finding a polynomial time algorithm for any NPC problem would mean:
- Diagram depicts relationship between P, NP, and EXPTIME (class of problems that provably require exponential time to solve)

It is believed that $P \neq N P \neq$ EXPTIME

Coping with NP-Completeness

1. Settle for algorithms that are fast on average: Worst case still takes exponential time, but doesn't occur very often.
But some NP-Complete problems are also average-time NPComplete!
2. Settle for fast algorithms that give near-optimal solutions: In traveling salesman, may not give the cheapest tour, but maybe good enough.
But finding even approximate solutions to some NP-Complete problems is NP-Complete!
3. Just get the exponent as low as possible! Much work on exponential algorithms for satisfiability: in practice can often solve circuits with 1,000+ inputs But even $2^{\text {n/100 }}$ will eventual hit the exponential curve!
