
1

Your Chance to Win a Turing
Award

• It is generally believed that P ≠ NP, i.e. there
are problems in NP that are not in P
› But no one has been able to show even one

such problem!

› This is the fundamental open problem in
theoretical computer science

› Nearly everyone has given up trying to prove it.
Instead, theoreticians prove theorems about
what follows once we assume P ≠ NP !

Alan Turing
(1912-1954)

Outline: Day 2

• We’ve seen that there are a bunch of
problems that seem to be hard.

• Today we’ll see how these problems
relate to one another.

• Def: P1 is reducible to P2 if there is a
conversion from an instance X of P1 to an
instance Y of P2 such that P1 is yes for X
iff P2 is yes for Y.

Clique k-Clique problem

• Is there a clique of size k in the graph?

Vertex cover

• Set of vertices so that each edge is
“covered”

Vertex cover of size 4

How are they related?

• How might we reduce clique to vertex
cover?

• That is, given a clique problem (G, k),
how can we turn it into a vertex cover
problem?

• Once we do this reduction, we know we
can always solve vertex cover given
solution to clique!

2

Clique to Vertex Cover

• We can reduce Clique to Vertex Cover.

• Given an input (G, k) to Clique:
› Build graph G complement

› Let k’ = n – k

• Vertex Cover is “as hard as” Clique.

• If G has a k Clique then G’ has a k’
cover:
› Let C be the clique of size k. Let the cover

be V-C. Then clearly every edge outside C is
covered, and in G’ there are no edges in C.

› Size is n-k

• If G’ has a k’ cover then G has a k
Clique:
› Let D be a cover in G’ of size k’. Then there

are no edges in V-D, since otherwise they
wouldn’t be covered. Therefore, V-D is a
clique in G.

› Size of clique is n-k’.

TSP

• Travelling Salesman Problem:
› Given complete weighted graph G, integer k.

› Is there a cycle that visits all vertices with cost <= k?

• One of the canonical problems.

• Note difference from Hamiltonian cycle: graph
is complete, and we care about weight.

Hamiltonian Cycle to TSP

• We can reduce Hamiltonian Cycle to TSP.

• Given graph G=(V, E):
› Construct complete graph G’ on N vertices with

edge weights: 1 if (u, v) in E, 2 otherwise.

› Let k = N.

• TSP is “as hard as” Hamiltonian cycle.

Example

1 1

1

1 1

1

1

1

2

2

B C

D E

G

B C

D E

G

1

1 1

1 1
1

2
2

2
2

3

Proof

• If G has a Hamiltonian Cycle then G’ has
a tour of weight N.
› The cycle is the tour, since there are N

edges of weight 1

• If G’ has a tour of weight N, then G has a
Hamiltonian Cycle.
› The tour is the cycle, since it must contain N

edges, each edge must weigh 1, and thus
must have been in original graph

Ham. Cycle to Longest Path

• Recall, Longest Path: Given directed
graph G, start node s, and integer k. Is
there a simple path from s of length >=
k?

• We’ll use Directed Hamiltonian Cycle.

The reduction

• Given a directed graph G, want to find
Ham. Cycle

• Convert to Longest path
› Pick any node as start vertex s.
› Create a new node t. For every edge (u, s),

add an edge (u, t). Let k = N.

• Longest Path is “as hard as” Ham. Cycle

Proof

• If G has a Ham. Cycle, then G’ has a
path of length k from s.
› Follow the cycle starting at s, at the last step

go to t instead of s.

• If G’ has a path of length k from s, then G
has a Ham. Cycle.
› Path must have hit every node exactly once,

and last step in path could have formed
cycle in G.

NP-completeness

• We’ve seen that there are seemingly
hard problems. That’s kind of interesting.

• The really interesting part: A large class
of these are equivalent. Solving one
would give a solution for all of them!

More on NP-completeness

• The pairs I picked weren’t important. There is a
large class of problems, called NP-complete,
such that any one can be reduced to any other.

• So given an algorithm for any NP-complete
problem, all the others can be solved.

• Conversely, if we can prove there is no efficient
algorithm for one, then there are no efficient
algorithms for any.

4

NP-Complete Problems

• The “hardest” problems in NP are called NP-
complete
› If any NP-complete problem is in P, then all of NP

is in P

• Examples:
› Hamiltonian circuit

› Traveling salesman: find the shortest path that visits all
nodes in a weighted graph (okay to repeat edges & nodes)

› Graph coloring: can the vertices of a graph be colored using
K colors, such that no two adjacent vertices have the same
color?

› Crossword puzzle construction: can a given set of 2N words,
each of length N, be arranged in an NxN crossword puzzle?

P, NP, and Exponential Time
Problems

• All currently known
algorithms for NP-complete
problems run in
exponential worst case
time
› Finding a polynomial time

algorithm for any NPC
problem would mean:

• Diagram depicts
relationship between P, NP,
and EXPTIME (class of
problems that provably
require exponential time to
solve)

It is believed that
P ≠ NP ≠ EXPTIME

EXPTIME

NP

P

NPC

Coping with NP-Completeness
1. Settle for algorithms that are fast on average: Worst

case still takes exponential time, but doesn’t occur
very often.
But some NP-Complete problems are also average-time NP-

Complete!

2. Settle for fast algorithms that give near-optimal
solutions: In traveling salesman, may not give the
cheapest tour, but maybe good enough.
But finding even approximate solutions to some NP-Complete

problems is NP-Complete!

3. Just get the exponent as low as possible! Much work
on exponential algorithms for satisfiability: in practice
can often solve circuits with 1,000+ inputs
But even 2n/100 will eventual hit the exponential curve!

