

Why compress files?

What is a file?

Data Compression

- Lossless compression $X=X^{\prime}$
- Lossy compression X != X'
- Compression Ratio $|\mathrm{X}| /|\mathrm{Y}|$
- Where $|X|$ is the \# of bits in X.

Dictionary Coding

- Does not use statistical knowledge of data.
- Encoder: As the input is processed develop a dictionary and transmit the index of strings found in the dictionary.
- Decoder: As the code is processed reconstruct the dictionary to invert the process of encoding.
- Examples: LZW, LZ77, Sequitur
- Applications: Unix Compress, gzip, GIF

LZW Encoding Algorithm

Repeat

find the longest match w in the dictionary output the index of w
put wa in the dictionary where a was the unmatched symbol

LZW Encoding Example (4)
Dictionary
0 a

1 b
2 ab
3 ba
4 aba

10

LZW Encoding Example (6)
Dictionary $\quad a \underline{a} a b a b a b a$
0 a
1 b
1 b
2 ab
2
3
ba
4 aba
5 abab

$$
\frac{a}{0} \frac{b}{1} \frac{a b}{2} \frac{a b a}{4} \frac{b a}{3}
$$

- Emulate the encoder in building the dictionary. Decoder is slightly behind the encoder.
initialize dictionary;
initialize dictionary;
decode first index to w;
decode first index to w;
put w? in dictionary;
put w? in dictionary;
repeat
repeat
decode the first symbol s of the index;
decode the first symbol s of the index;
complete the previous dictionary entry with s
complete the previous dictionary entry with s
finish decoding the remainder of the index;
finish decoding the remainder of the index;
put w? in the dictionary where w was just decoded;
put w? in the dictionary where w was just decoded;

LZW Decoding Example (1)

Dictionary
0 a
1 b
2 a ?

012436
a

14

LZW Decoding Example (2b)
Dictionary
0 a
1 b
2 ab
3 b?
3 b?

$-\frac{1}{\mathrm{a}}{ }^{2}$

LZW Decoding Example (3b)
Dictionary
0 a
1 b
2 ab
3 ba
4 ab?

ㅇ́ㄴㄴ́ㄴ
a bab

Dictionary

0 a
$\begin{array}{ll}1 & \mathrm{~b} \\ 2 & \mathrm{ab} \\ 3 & \mathrm{ba} \\ 4 & \mathrm{aba}\end{array}$
4 aba
5 aba?
$\frac{0}{a} \frac{1}{2}-436$
$\overline{\mathrm{a}} \mathrm{b} \mathrm{ab} \mathrm{a}$

LZW Decoding Example (4b)

0 a $\quad \frac{1}{a} \frac{1}{b}=\frac{4}{a b} a b a$
$\underline{0} 12436$ a b ab aba
$4-2+2$
aba

Trie Data Structure for Encoder's Dictionary

- Fredkin (1960)

Encoder Uses a Trie (2)

$\frac{a}{6} \frac{b}{1} \frac{a}{4} \frac{c}{2} \frac{a}{3} \frac{a b}{5} \frac{r a}{7} \frac{a b r}{12} \frac{a c}{8}$ ad abra
014020357128

28

Decoder's Data Structure

- Simply an array of strings

Bounded Size Dictionary

- Bounded Size Dictionary
- n bits of index allows a dictionary of size 2^{n}
- Doubfful that long entries in the dictionary will be useful.
- Strategies when the dictionary reaches its limit.

1. Don't add more, just use what is there.
2. Throw it away and start a new dictionary.
3. Double the dictionary, adding one more bit to indices.
4. Throw out the least recently visited entry to make room for the new entry.

Notes on LZW

- Extremely effective when there are repeated patterns in the data that are widely spread.
- Negative: Creates entries in the dictionary that may never be used.
- Applications:
- Unix compress, GIF, V. 42 bis modem standard

Solution A

- If $x_{n+1} x_{n+2} \ldots x_{n+k}$ is a substring of $x_{1} x_{2} \ldots x_{n}$ then $x_{n+1} x_{n+2} \ldots x_{n+k}$ can be coded by $<j, k>$ where j is the beginning of the match.
- Example
ababababa babababababababab.... coded
ababababa babababa babababab.... <2,8>

Implementing the LRV Strategy

			Doubly linked queue Least Recent	1 2 3 4	Circular sibling lists a

$5 \cdot \mathrm{c} 8 \mathrm{x}, \mathrm{d} 110$

Most Recent $\quad \frac{1}{1} \frac{1}{4} \frac{2}{2} 0 \frac{1}{5} \frac{1}{7} \frac{a}{12} \frac{a c}{8}$

32

LZ77

- Ziv and Lempel, 1977
- Dictionary is implicit
- Use the string coded so far as a dictionary.
- Given that $\mathrm{x}_{1} \mathrm{x}_{2} \ldots \mathrm{x}_{\mathrm{n}}$ has been coded we want to code $x_{n+1} x_{n+2} \ldots x_{n+k}$ for the largest k possible.

Solution A Problem

- What if there is no match at all in the dictionary?
ababababa cabababababababab....
coded
- Solution B. Send tuples $<j, k, x>$ where - If $k=0$ then x is the unmatched symbol
- If $k>0$ then the match starts at j and is k long and the unmatched symbol is x .

Solution B

- If $x_{n+1} x_{n+2} \ldots x_{n+k}$ is a substring of $x_{1} x_{2} \ldots x_{n}$ and $x_{n+1} x_{n+2} \ldots x_{n+k} x_{n+k+1}$ is not then $x_{n+1} x_{n+2} \ldots x_{n+k}$ x_{n+k+1} can be coded by

$$
<j, k, x_{n+k+1}>
$$

where j is the beginning of the match.

- Examples
ababababa cabababababababab....
ababababa \underline{c} ababababab ababab.... <0,0,c> <1,9,b>

Surprise Code!

a bababababababababababab\$ <0,0,a>
a b ababababababababababab\$ <0,0,b>
a b ababababababababababab\$ <1,22,\$>

Solution B Example

```
    a bababababababababababab.....
```

<0,0,a>
a b ababababababababababab.....
<0,0,b>
a \underline{b} aba bababababababababab.....
<1,2,a>
$\underline{a} \underline{b}$ aba babab ababababababab.....
$<2,4, b>$
a $\underline{\mathrm{b}}$ aba babab abababababa bab.....
<1,10,a>

Surprise Code!	
a bababababababababababab\$ <0,0,a>	
$\underset{<0,0, b>}{\underline{a} \underline{b} \text { ababababababababababab } \$ ~}$	
$\underline{\mathrm{a}} \underline{\mathrm{b}}$ ababababababababababab\$ ${ }_{<1,22, \$>}$	
39	

Solution C

- The matching string can include part of itself!
- If $x_{n+1} x_{n+2} \ldots x_{n+k}$ is a substring of
$x_{1} x_{2} \ldots x_{n} x_{n+1} x_{n+2} \ldots x_{n+k}$
that begins at $j \leq n$ and $x_{n+1} x_{n+2 \ldots} x_{n+k} x_{n+k+1}$ is not then $x_{n+1} x_{n+2} \ldots x_{n+k} x_{n+k+1}$ can be coded by
$<j, k, x_{n+k+1}>$

In Class Exercise

- Use Solution C to code the string - aaaabaaabaabab\$

Search in the Sliding Window			
a $\frac{\downarrow}{\text { aabbababaaab\$ }}$	offset 1		
	2	1	
	2	2	
a $\frac{\downarrow}{\text { aaabababaaab\$ }}$	2	3	
a $\frac{\downarrow}{\text { aaabababaaab\$ }}$	2	4	
$\text { a } \downarrow \downarrow$	2	5	$\begin{aligned} & \text { tuple } \\ & <2,5, a> \end{aligned}$

Coding the Tuples

- Simple fixed length code

$$
\begin{gathered}
\left\lceil\log _{2}(\mathrm{~s}+1)\right\rceil+\left\lceil\log _{2}(\mathrm{~s}+\mathrm{t}+1)\right\rceil+\left\lceil\log _{2} \mathrm{a}\right\rceil \\
\mathrm{s}=4, \mathrm{t}=4, \mathrm{a}=3 \quad \begin{array}{c}
\text { tuple } \\
<2,5, \mathrm{a}> \\
\text { fixed code } \\
010010100
\end{array}
\end{gathered}
$$

- Variable length code using adaptive Huffman or arithmetic code on Tuples
- Two passes, first to create the tuples, second to code the tuples
- One pass, by pipelining tuples into a variable length coder

Bounded Buffer - Sliding Window

- We want the triples <j,k,x> to be of bounded size. To achieve this we use bounded buffers.
- Search buffer of size s is the symbols $x_{n-s+1} \ldots x_{n}$ j is then the offset into the buffer.
- Look-ahead buffer of size t is the symbols $x_{n+1} \ldots x_{n+t}$
- Match pointer can start in search buffer and go into the look-ahead buffer but no farther.

Zip and Gzip

- Search Window
- Search buffer 32KB
- Look-ahead buffer 258 Bytes
- How to store such a large dictionary
- Hash table that stores the starting positions for all three byte sequences.
- Hash table uses chaining with newest entries at the beginning of the chain. Stale entries can be ignored.
- Second pass for Huffman coding of tuples.
- Coding done in blocks to avoid disk accesses.

48

Notes on LZ77

- Very popular especially in unix world
- Many variants and implementations - Zip, Gzip, PNG, PKZip,Lharc, ARJ
- Tends to work better than LZW
- LZW has dictionary entries that are never used
- LZW has past strings that are not in the dictionary
- LZ77 has an implicit dictionary. Common tuples are coded with few bits.

Variable Rate Code Example

- Example: a 0, b 100, c 101, d 11
- Coding:
- aabddcaa $=16$ bits
- $00100111110100=14$ bits
- Prefix code ensures unique decodability.

Huffman Coding

- Huffman (1951)
- Uses frequencies of symbols in a string to build a variable rate prefix code.
- Each symbol is mapped to a binary string
- More frequent symbols have shorter codes.
- No code is a prefix of another.
- Example:

No match Tuple $=<0,0, b>$

52

Cost of a Huffman Tree

- Let $p_{1}, p_{2}, \ldots, p_{m}$ be the probabilities for the symbols $a_{1}, a_{2}, \ldots, a_{m}$, respectively.
- Define the cost of the Huffman tree T to be

$$
C(T)=\sum_{i=1}^{m} p_{i} r_{i}
$$

where r_{i} is the length of the path from the root to a_{i}.

- $C(T)$ is the expected length of the code of a symbol coded by the tree T. $C(T)$ is the bit rate of the code.

Example of Cost

- Example: a $1 / 2$, b $1 / 8$, c $1 / 8$, d $1 / 4$

$C(T)=1 \times 1 / 2+3 \times 1 / 8+3 \times 1 / 8+2 \times 1 / 4=1.75$

Optimality Principle 1

- In a Huffman tree a lowest probability symbol has maximum distance from the root.
- If not exchanging a lowest probability symbol with one at maximum distance will lower the cost.

$C\left(T^{\prime}\right)=C(T)+h p-h q+k q-k p=C(T)-(h-k)(q-p)<C(T)$

Huffman Tree

- Input: Probabilities $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{m}}$ for symbols $a_{1}, a_{2}, \ldots, a_{m}$, respectively.
- Output: A tree that minimizes the average number of bits (bit rate) to code a symbol. That is, minimizes

$$
\mathrm{HC}(\mathrm{~T})=\sum_{\mathrm{i}=1}^{m} \mathrm{p}_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} \quad \text { bit rate }
$$

where r_{i} is the length of the path from the root to a_{i}. This is the Huffman tree or Huffman code

Optimality Principle 2

- The second lowest probability is a sibling of the the smallest in some Huffman tree.
- If not, we can move it there not raising the cost.

$C\left(T^{\prime}\right)=C(T)+h q-h r+k r-k q=C(T)-(h-k)(r-q) \leq C(T)$

Optimality Principle 3

- Assuming we have a Huffman tree T whose two lowest probability symbols are siblings at maximum depth, they can be replaced by a new symbol whose probability is the sum of their probabilities.
- The resulting tree is optimal for the new symbol set.

Optimality Principle 3 (cont')

- If T' were not optimal then we could find a lower cost tree T". This will lead to a lower cost tree T'" for the original alphabet.

$C\left(T^{\prime \prime \prime}\right)=C\left(T^{\prime \prime}\right)+p+q<C\left(T^{\prime}\right)+p+q=C(T)$ which is a contradiction

Iterative Huffman Tree Algorithm
form a node for each symbol a_{i} with weight p_{i};
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do
$\min 1:=$ delete-min;
$\min 2:=$ delete-min;
create a new node n;
n.weight := min
n.left := min1;
n.left := $\min 1$;
n.right $:=\min 2 ;$
insert(n)
return the last node in the priority queue.

Example of Huffman Tree Algorithm (1)

- $P(a)=.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1$

Example of Huffman Tree Algorithm (2)
.4
\square

.3	.1
c	d

.4
a

Example of Huffman Tree Algorithm (4)

$\begin{array}{r}.4 \\ . a \\ \hline\end{array}$

.3

${ }^{65}$

In Class Exercise

- $P(a)=1 / 2, P(b)=1 / 4, P(c)=1 / 8, P(d)=1 / 16$, $P(e)=1 / 16$
- Compute the Huffman tree and its bit rate.
- Compute the Entropy
- Compare
- Hint: For the tree change probabilities to be integers: $a: 8, b: 4, c: 2, d: 1, e: 1$. Normalize at the end.

Powers of Two

- If all the probabilities are powers of two then

$$
\mathrm{HC}=\mathrm{H}
$$

- Proof by induction on the number of symbols.

Let $\mathrm{p}_{1} \leq \mathrm{p}_{2} \leq \ldots \leq \mathrm{p}_{\mathrm{n}}$ be the probabilities that add up to 1
If $\mathrm{n}=1$ then $\mathrm{HC}=\mathrm{H}$ (both are zero).
If $\mathrm{n}>1$ then $\mathrm{p}_{1}=\mathrm{p}_{2}=2^{k}$ for some k , otherwise the sum cannot add up to 1 .
Combine the first two symbols into a new symbol of probability $2^{\star}+2^{\star}=2^{k+1}$.

Optimal Huffman Code vs. Entropy

- $P(a)=.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1$

Entropy

$$
\begin{aligned}
\mathrm{H} & =-\left(.4 \times \log _{2}(.4)+.1 \times \log _{2}(.1)+.3 \times \log _{2}(.3)\right. \\
& \left.+.1 \times \log _{2}(.1)+.1 \times \log _{2}(.1)\right) \\
& =2.05 \text { bits per symbol }
\end{aligned}
$$

Huffman Code
$\mathrm{HC}=.4 \times 1+.1 \times 4+.3 \times 2+.1 \times 3+.1 \times 4$
$=2.1$ bits per symbol pretty good!

68

Quality of the Huffman Code

- The Huffman code is within one bit of the entropy lower bound.
$\mathrm{H} \leq \mathrm{HC} \leq \mathrm{H}+1$
- Huffman code does not work well with a two symbol alphabet.
- Example: $P(0)=1 / 100, P(1)=99 / 100$
- $\mathrm{HC}=1$ bits/symbol

$-H=-\left((1 / 100)^{*} \log _{2}(1 / 100)+(99 / 100) \log _{2}(99 / 100)\right)$ $=.08$ bits/symbol

```
Powers of Two (Cont.)
By the induction hypothesis
    HC}(\mp@subsup{p}{1}{}+\mp@subsup{p}{2}{},\mp@subsup{p}{3}{},\ldots,\mp@subsup{p}{n}{})=H(\mp@subsup{p}{1}{}+\mp@subsup{p}{2}{},\mp@subsup{p}{3}{},\ldots,\mp@subsup{p}{n}{}
    =-(p
    =-2-k+1}\mp@subsup{\operatorname{log}}{2}{}(\mp@subsup{2}{}{-k+1})-\mp@subsup{\sum}{i=3}{n}\mp@subsup{p}{i}{}\mp@subsup{log}{2}{(}(\mp@subsup{p}{i}{}
    =-2-k+1}(\mp@subsup{\operatorname{log}}{2}{}(\mp@subsup{2}{}{-k})+1)-\mp@subsup{\sum}{i=3}{n}\mp@subsup{p}{i}{}\mp@subsup{\operatorname{log}}{2}{}(\mp@subsup{p}{i}{}
    =-2-k}\mp@subsup{\operatorname{log}}{2}{}(\mp@subsup{2}{}{-k})-\mp@subsup{2}{}{-k}\mp@subsup{\operatorname{log}}{2}{}(\mp@subsup{2}{}{-k})-\mp@subsup{\sum}{\textrm{i}=3}{n}\mp@subsup{p}{i}{}\mp@subsup{\operatorname{log}}{2}{}(\mp@subsup{p}{i}{})-\mp@subsup{2}{}{-k}-\mp@subsup{2}{}{-k
    =- \sum
    =H(p
```


Powers of Two (Cont.)

By the previous page,
$H C\left(p_{1}+p_{2}, p_{3}, \ldots, p_{n}\right)=H\left(p_{1}, p_{2}, \ldots, p_{n}\right)-\left(p_{1}+p_{2}\right)$
By the properties of Huffman trees (principle 3),
$H C\left(p_{1}, p_{2}, \ldots, p_{n}\right)=H C\left(p_{1}+p_{2}, p_{3}, \ldots, p_{n}\right)+\left(p_{1}+p_{2}\right)$
Hence,
$H C\left(p_{1}, p_{2}, \ldots, p_{n}\right)=H\left(p_{1}, p_{2}, \ldots, p_{n}\right)$

Quality of Extended Alphabet

- Suppose we extend the alphabet to symbols of length k then

$$
H \leq H C \leq H+1 / k
$$

- Pros and Cons of Extending the alphabet
+ Better compression
- 2^{k} symbols
- padding needed to make the length of the input divisible by k

Huffman Codes with Context

- Suppose we add a one symbol context. That is in compressing a string $x_{l} x_{2} \ldots x_{n}$ we want to take into account x_{k-1} when encoding x_{k}.
- New model, so entropy based on just independent probabilities of the symbols doesn't hold. The new entropy model (2nd order entropy) has for each symbol a probability for each other symbol following it.
- Example: $\{a, b, c\}$

Complexity of Huffman Code Design

- Time to design Huffman Code is $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ where n is the number of symbols.
- Each step consists of a constant number of priority queue operations (2 deletemin's and 1 insert)

Approaches to Huffman Codes

1. Frequencies computed for each input

- Must transmit the Huffman code or frequencies as well as the compressed input
Requires two passes

2. Fixed Huffman tree designed from training data

- Do not have to transmit the Huffman tree because it is known to the decoder
- H. 263 video coder

3. Adaptive Huffman code

- One pass
- Huffman tree changes as frequencies change

