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Why compress files?
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What is a file?
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• Lossless compression  X = X’

• Lossy compression  X != X’

• Compression Ratio  |X|/|Y|
– Where |X| is the # of bits in X.

Data Compression

Encoder DecoderX Y X’

original compressed decompressed
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Dictionary Coding

• Does not use statistical knowledge of data.

• Encoder: As the input is processed develop a
dictionary and transmit the index of strings
found in the dictionary.

• Decoder: As the code is processed
reconstruct the dictionary to invert the
process of encoding.

• Examples: LZW, LZ77, Sequitur

• Applications: Unix Compress, gzip, GIF
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LZW Encoding Algorithm

Repeat
   find the longest match w in the dictionary
   output the index of w
   put wa in the dictionary where a was the
                   unmatched symbol
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LZW Encoding Example (1)
Dictionary

0   a
1   b

a b a b a b a b a
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LZW Encoding Example (2)
Dictionary

0   a
1   b
2   ab

a b a b a b a b a
0
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LZW Encoding Example (3)
Dictionary

0   a
1   b
2   ab
3   ba

a b a b a b a b a
0 1
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LZW Encoding Example (4)
Dictionary

0   a
1   b
2   ab
3   ba
4   aba

a b a b a b a b a
0 1  2
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LZW Encoding Example (5)
Dictionary

0   a
1   b
2   ab
3   ba
4   aba
5   abab

a b a b a b a b a
0 1  2      4
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LZW Encoding Example (6)
Dictionary

0   a
1   b
2   ab
3   ba
4   aba
5   abab

a b a b a b a b a
0 1  2      4     3
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LZW Decoding Algorithm
• Emulate the encoder in building the dictionary.

Decoder is slightly behind the encoder.

initialize dictionary;
decode first index to w;
put w? in dictionary;
repeat
    decode the first symbol s of the index;
    complete the previous dictionary entry with s;
    finish decoding the remainder of the index;
    put w? in the dictionary where w was just decoded;
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LZW Decoding Example (1)
Dictionary

0   a
1   b
2   a?

0 1 2 4 3 6
a
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LZW Decoding Example (2a)
Dictionary

0   a
1   b
2   ab

0 1 2 4 3 6
a  b
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LZW Decoding Example (2b)
Dictionary

0   a
1   b
2   ab
3   b?

0 1 2 4 3 6
a  b
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LZW Decoding Example (3a)
Dictionary

0   a
1   b
2   ab
3   ba

0 1 2 4 3 6
a  b a

18

LZW Decoding Example (3b)
Dictionary

0   a
1   b
2   ab
3   ba
4   ab?

0 1 2 4 3 6
a  b ab
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LZW Decoding Example (4a)
Dictionary

0   a
1   b
2   ab
3   ba
4   aba

0 1 2 4 3 6
a  b ab a
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LZW Decoding Example (4b)
Dictionary

0   a
1   b
2   ab
3   ba
4   aba
5   aba?

0 1 2 4 3 6
a  b ab aba
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LZW Decoding Example (5a)
Dictionary

0   a
1   b
2   ab
3   ba
4   aba
5   abab

0 1 2 4 3 6
a  b ab aba b

22

LZW Decoding Example (5b)
Dictionary

0   a
1   b
2   ab
3   ba
4   aba
5   abab
6   ba?

0 1 2 4 3 6
a  b ab aba ba
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LZW Decoding Example (6a)
Dictionary

0   a
1   b
2   ab
3   ba
4   aba
5   abab
6   bab

0 1 2 4 3 6
a  b ab aba ba b
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LZW Decoding Example (6b)
Dictionary

0   a
1   b
2   ab
3   ba
4   aba
5   abab
6   bab
7   bab?

0 1 2 4 3 6
a  b ab aba ba bab
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Decoding Exercise

Base Dictionary

0  a
1  b
2  c
3  d
4  r

0  1  4  0  2  0  3  5  7
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Trie Data Structure for Encoder’s
Dictionary

• Fredkin (1960)

a b c d r
0  1  2  3   4

b 5 r 6c 8 a 9d 10 a 11

r 12

a 7

a 13

a 14

0   a 9   ca
1   b 10 ad
2   c 11 da
3   d 12 abr
4   r 13 raa 
5   ab 14 abra 
6   br
7   ra
8   ac
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Encoder Uses a Trie (1)

a b r a c a d a b r a a b r a c a d a b r a
0 1 4 0 2 0 3  5   7    12

a b c d r
0  1  2  3   4

b 5 r 6c 8 a 9d 10 a 11

r 12

a 7

a 13

a 14
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Encoder Uses a Trie (2)

a b r a c a d a b r a a b r a c a d a b r a
0 1 4 0 2 0 3  5   7    12    8

a b c d r
0  1  2  3   4

b 5 r 6c 8 a 9d 10 a 11

r 12

a 7

a 13

a 14

a 15
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Decoder’s Data Structure

• Simply an array of strings

0   a 9   ca
1   b 10 ad
2   c 11 da
3   d 12 abr
4   r 13 raa 
5   ab 14 abr? 
6   br
7   ra
8   ac

0 1 4 0 2 0 3  5  7 12   8  ...
a b r a c a d ab ra abr
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Bounded Size Dictionary

• Bounded Size Dictionary
– n bits of index allows a dictionary of size 2n

– Doubtful that long entries in the dictionary will be
useful.

• Strategies when the dictionary reaches its limit.
1. Don’t add more, just use what is there.

2. Throw it away and start a new dictionary.

3. Double the dictionary, adding one more bit to indices.
4. Throw out the least recently visited entry to make

room for the new entry.



6

31

Implementing the LRV Strategy

a b r a c a d a b r a a b r a c a d a b r a
0 1 4 0 2 0 3  5   7    12

a b c d r
0  1  2  3   4

b 5 r 6c 8 a 9d 10 a 11

r 12

a 7

a 13

a 14

Most Recent

Least Recent

Doubly linked queue
Circular sibling lists
Parent pointers
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Implementing the LRV Strategy

a b r a c a d a b r a a b r a c a d a b r a
0 1 4 0 2 0 3  5   7    12    8

a b c d r
0  1  2  3   4

b 5

a 6

c 8 a 9d 10 a 11

r 12

a 7

a 13

a 14

Most Recent

Least Recent

Doubly linked queue
Circular sibling lists
Parent pointers
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Notes on LZW

• Extremely effective when there are repeated
patterns in the data that are widely spread.

• Negative: Creates entries in the dictionary
that may never be used.

• Applications:
– Unix compress, GIF, V.42 bis modem standard
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LZ77

• Ziv and Lempel, 1977

• Dictionary is implicit

• Use the string coded so far as a dictionary.

• Given that x1x2...xn has been coded we want
to code xn+1xn+2...xn+k for the largest k
possible.
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Solution A

• If xn+1xn+2...xn+k is a substring of x1x2...xn then
xn+1xn+2...xn+k can be coded by <j,k> where j is
the beginning of the match.

• Example

ababababa babababababababab....
coded

ababababa babababa babababab....
<2,8>
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Solution A Problem

• What if there is no match at all in the
dictionary?

• Solution B.  Send tuples <j,k,x> where
– If k = 0 then x is the unmatched symbol
– If k > 0 then the match starts at j and is k long and

the unmatched symbol is x.

ababababa cabababababababab....
coded



7

37

Solution B

• If xn+1xn+2...xn+k is a substring of x1x2...xn and
xn+1xn+2... xn+kxn+k+1 is not then  xn+1xn+2...xn+k
xn+k+1 can be coded by
                     <j,k, xn+k+1 >
where j is the beginning of the match.

• Examples

ababababa cabababababababab....

ababababa c ababababab ababab....
<0,0,c>  <1,9,b>
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Solution B Example

a bababababababababababab.....
<0,0,a>

a b ababababababababababab.....
<0,0,b>

a b aba bababababababababab.....
<1,2,a>

a b aba babab ababababababab.....
<2,4,b>

a b aba babab abababababa bab.....
<1,10,a>
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Surprise Code!

a bababababababababababab$
<0,0,a>

a b ababababababababababab$
<0,0,b>

a b ababababababababababab$
<1,22,$>
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Surprise Decoding

<0,0,a><0,0,b><1,22,$>

<0,0,a> a
<0,0,b> b
<1,22,$> a
<2,21,$> b
<3,20,$> a
<4,19,$> b
...
<22,1,$> b
<23,0,$> $
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Surprise Decoding

<0,0,a><0,0,b><1,22,$>

<0,0,a> a
<0,0,b> b
<1,22,$> a
<2,21,$> b
<3,20,$> a
<4,19,$> b
...
<22,1,$> b
<23,0,$> $
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Solution C

• The matching string can include part of itself!

• If xn+1xn+2...xn+k is a substring of
             x1x2...xn xn+1xn+2...xn+k
that begins at j < n and xn+1xn+2... xn+kxn+k+1 is
not then  xn+1xn+2...xn+k xn+k+1 can be coded by
                     <j,k, xn+k+1 >
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In Class Exercise

• Use Solution C to code the string
– aaaabaaabaabab$
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Bounded Buffer – Sliding Window

• We want the triples <j,k,x> to be of bounded size.  To
achieve this we use bounded buffers.
– Search buffer of size s is the symbols xn-s+1...xn

j is then the offset into the buffer.

– Look-ahead buffer of size t is the symbols xn+1...xn+t

• Match pointer can start in search buffer and go into the
look-ahead buffer but no farther.

aaaabababaaab$
search buffer     look-ahead buffer
       coded               uncoded

match pointer

tuple
<2,5,a>

Sliding window

uncoded text pointer
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Search in the Sliding Window

aaaabababaaab$

aaaabababaaab$

aaaabababaaab$

offset    length
    1           0

    2           1

    2           2

    2           3

    2           4

    2           5

    

aaaabababaaab$

aaaabababaaab$

aaaabababaaab$
tuple
<2,5,a>
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Coding Example

  tuple
<0,0,a>
<1,3,b>
<2,5,a>
<4,2,$>

aaaabababaaab$
aaaabababaaab$
aaaabababaaab$
aaaabababaaab$

s = 4, t = 4, a = 3
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Coding the Tuples

• Simple fixed length code

• Variable length code using adaptive Huffman
or arithmetic code on Tuples
– Two passes, first to create the tuples, second to

code the tuples
– One pass, by pipelining tuples into a variable

length coder

     alog1)t(slog1)(slog 222 +++++

s = 4, t = 4, a = 3   tuple       fixed code
<2,5,a>  010 0101 00
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Zip and Gzip

• Search Window
– Search buffer 32KB
– Look-ahead buffer 258 Bytes

• How to store such a large dictionary
– Hash table that stores the starting positions for all

three byte sequences.
– Hash table uses chaining with newest entries at the

beginning of the chain.  Stale entries can be ignored.

• Second pass for Huffman coding of tuples.
• Coding done in blocks to avoid disk accesses.
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Example

aaaabababaaabaaaababababaaabba$

2 1

6

5

4

3

8

7

10

9

11

aba

12

Offset =12 – 8 = 4
Length = 5
Tuple = <4,5,a>
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Example

aaaabababaaabaaaababababaaabba$

14 10

12

5

8

11

17

7

15

13

16

18

6

9

2 1

3

4

bab
No match
Tuple = <0,0,b>
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Notes on LZ77

• Very popular especially in unix world

• Many variants and implementations
– Zip, Gzip, PNG, PKZip,Lharc, ARJ

• Tends to work better than LZW
– LZW has dictionary entries that are never used
– LZW has past strings that are not in the dictionary

– LZ77 has an implicit dictionary.  Common tuples
are coded with few bits.
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Huffman Coding
• Huffman (1951)

• Uses frequencies of symbols in a string to build a variable rate
prefix code.
– Each symbol is mapped to a binary string.

– More frequent symbols have shorter codes.

– No code is a prefix of another.

• Example:
                  a  0
                  b  100
                  c  101
                  d  11

b c

a

d

0

0

0

1

1

1
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Variable Rate Code Example

• Example:   a  0, b  100, c  101, d  11

• Coding:
– aabddcaa = 16 bits

– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.
– 00100111110100

– a a b d d c a a
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Cost of a Huffman Tree
• Let p1, p2, ... , pm be the probabilities for the

symbols a1, a2, ... ,am, respectively.
• Define the cost of the Huffman tree T to be

where ri is the length of the path from the root
to ai.

• C(T) is the expected length of the code of a
symbol coded by the tree T.   C(T) is the bit
rate of the code.

i

m

1i
irpC(T) ∑

=

=
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Example of Cost

• Example:   a  1/2, b  1/8, c  1/8, d  1/4

b c

a

d

0

0

0

1

1

1

T

C(T) = 1 x 1/2 + 3 x 1/8 + 3 x 1/8 + 2 x 1/4 = 1.75
a            b             c             d
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Huffman Tree

• Input: Probabilities p1, p2, ... , pm for symbols
a1, a2, ... ,am, respectively.

• Output: A tree that minimizes the average
number of bits (bit rate) to code a symbol.
That is, minimizes

where ri is the length of the path from the root
to ai.  This is the Huffman tree or Huffman
code

i

m

1i
irpHC(T) ∑

=

= bit rate
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Optimality Principle 1
• In a Huffman tree a lowest probability symbol

has maximum distance from the root.
– If not exchanging a lowest probability symbol with

one at maximum distance will lower the cost.

q

p

T

q

T’

p

C(T’) = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)

p smallest
p < q
k < h

h

k
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Optimality Principle 2

• The second lowest probability is a sibling of
the the smallest in some Huffman tree.
– If not, we can move it there not raising the cost.

p

q

T p smallest
q 2nd smallest

q < r
k < h

r p

r

T’

q

C(T’) = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

h

k
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Optimality Principle 3
• Assuming we have a Huffman tree T whose two

lowest probability symbols are siblings at
maximum depth, they can be replaced by a new
symbol whose probability is the sum of their
probabilities.
– The resulting tree is optimal for the new symbol set.

p

T

q

T’

q+p

p smallest
q 2nd smallest

C(T’) = C(T) + (h-1)(p+q) - hp -hq = C(T) - (p+q)

h
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Optimality Principle 3 (cont’)

• If T’ were not optimal then we could find a
lower cost tree T’’.  This will lead to a lower
cost tree T’’’ for the original alphabet.

T’

q+p

T’’

q+p

T’’’

q p

C(T’’’) = C(T’’) + p + q < C(T’) + p + q = C(T) which is a contradiction
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Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one
node is optimal.  Otherwise

2. Find the two lowest probability symbols with 
probabilities p and q respectively.

3. Replace these with a new symbol with 
probability p + q.

4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an 

internal node with two children with the old symbols.
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Iterative Huffman Tree Algorithm
form a node for each symbol ai with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do
    min1 := delete-min;
    min2 := delete-min;
    create a new node n;
    n.weight := min1.weight + min2.weight;
    n.left := min1;
    n.right := min2;
    insert(n)
return the last node in the priority queue.
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Example of Huffman Tree Algorithm (1)

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

a b c d e
.4 .1 .3 .1 .1

a

b

c d

e

.4 .3 .1.2
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Example of Huffman Tree Algorithm (2)

a

b

c d

e

.4 .3 .1.2

a

b

c

d

e

.4 .3.3
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Example of Huffman Tree Algorithm (3)

a

b

c

d

e

.4 .3.3
a

b

c

d

e

.4 .6
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Example of Huffman Tree Algorithm (4)

a

b

c

d

e

.4 .6

a

b

c

d

e

1
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Huffman Code

a

b

c

d

e

a   0
b   1110
c   10
d   110
e   1111

0 1

1

1

1

0

0

0

average number of bits per symbol is
.4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 = 2.1
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Optimal Huffman Code vs. Entropy

Entropy

H = -(.4 x log2(.4) + .1 x log2(.1) + .3 x log2(.3)
           + .1 x log2(.1) + .1 x log2(.1))
   = 2.05 bits per symbol

Huffman Code

HC = .4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4
      = 2.1 bits per symbol
         pretty good!

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1
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In Class Exercise

• P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16,
P(e) = 1/16

• Compute the Huffman tree and its bit rate.

• Compute the Entropy

• Compare

• Hint: For the tree change probabilities to be
integers: a:8, b:4, c:2, d:1, e:1.  Normalize at
the end.
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Quality of the Huffman Code

• The Huffman code is within one bit of the entropy lower bound.

• Huffman code does not work well with a two symbol alphabet.
– Example: P(0) = 1/100, P(1) = 99/100

– HC = 1 bits/symbol

– H = -((1/100)*log2(1/100) + (99/100)log2(99/100))
    = .08 bits/symbol

1HHCH +≤≤

1 0

10
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Powers of Two

• If all the probabilities are powers of two then

• Proof by induction on the number of symbols.
Let p1 < p2 < ... < pn be the probabilities that add up

to 1
If n = 1 then HC = H (both are zero).
If n > 1 then p1 = p2 = 2-k for some k, otherwise the

sum cannot add up to 1.
Combine the first two symbols into a new symbol of

probability 2-k + 2-k = 2-k+1.

HHC =

72

Powers of Two (Cont.)
By the induction hypothesis

)p(p)p,...,p,H(p

)p(p)(plogp

22)(plogp)(2log2)(2log2

)(plogp1))(2(log2

)(plogp)(2log2

)(plogp)p(p)logp(p- 

)p,...,p,pH(p)p,...,p,pHC(p

21n21

21

n

1i
i2i

kk
n

3i
i2i

k
2

kk
2

k

n

3i
i2i

k
2

1k

n

3i
i2i

1k
2

1k

n

3i
i2i21221

n321n321

+−=

+−−=

−−−−−=

−+−=

−−=

−++=

+=+

∑

∑

∑

∑

∑

=

−−

=

−−−−

=

−+−

=

+−+−

=
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Powers of Two (Cont.)
By the previous page,

By the properties of Huffman trees (principle 3),

Hence,

)p(p)p,...,p,H(p)p,...,p,pHC(p 21n21n321 +−=+

)p(p)p,...,p,pHC(p)p,...,p,HC(p 21n321n21 +++=

)p,...,p,H(p)p,...,p,HC(p n21n21 =
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Extending the Alphabet
• Assuming independence P(ab) = P(a)P(b), so

we can lump symbols together.

• Example: P(0) = 1/100, P(1) = 99/100
– P(00) = 1/10000, P(01) = P(10) = 99/10000,

P(11) = 9801/10000.

01

11

10

00

1

1

1

0

0

0

HC = 1.03 bits/symbol (2 bit symbol)
      = .515 bits/bit

Still not that close to H = .08 bits/bit
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Quality of Extended Alphabet

• Suppose we extend the alphabet to symbols
of length k then

• Pros and Cons of Extending the alphabet
+ Better compression
 - 2k symbols

 - padding needed to make the length of the input
divisible by k

1/kHHCH +≤≤
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Huffman Codes with Context
• Suppose we add a one symbol context.  That is in compressing

a string x1x2...xn we want to take into account xk-1 when encoding
xk.
– New model, so entropy based on just independent probabilities of

the symbols doesn’t hold.  The new entropy model (2nd order
entropy) has for each symbol a probability for each other symbol
following it.

– Example: {a,b,c}

     a    b    c
a  .4   .2   .4
b  .1   .9    0
c  .1   .1   .8

prev

next

77

Multiple Codes

     a    b    c
a  .4   .2   .4
b  .1   .9    0
c  .1   .1   .8

prev

next

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

a b c

a b b a c c

Code for first symbol
a  00
b  01
c  10

00 00 0 1 01 0
.2

.4

.4

.9 .1

.1.1

.8
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Complexity of Huffman Code Design

• Time to design Huffman Code is O(n log n)
where n is the number of symbols.
– Each step consists of a constant number of priority

queue operations (2 deletemin’s and 1 insert)
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Approaches to Huffman Codes

1. Frequencies computed for each input
– Must transmit the Huffman code or frequencies as well

as the compressed input
– Requires two passes

2. Fixed Huffman tree designed from training data
– Do not have to transmit the Huffman tree because it is

known to the decoder.
– H.263 video coder

3. Adaptive Huffman code
– One pass
– Huffman tree changes as frequencies change


