
1

CSE 326: Data Structures

Dictionaries for Data Compression

Neva Cherniavsky
Summer 2006

2

Why compress files?

3

What is a file?

4

• Lossless compression X = X’

• Lossy compression X != X’

• Compression Ratio |X|/|Y|
– Where |X| is the # of bits in X.

Data Compression

Encoder DecoderX Y X’

original compressed decompressed

5

Dictionary Coding

• Does not use statistical knowledge of data.

• Encoder: As the input is processed develop a
dictionary and transmit the index of strings
found in the dictionary.

• Decoder: As the code is processed
reconstruct the dictionary to invert the
process of encoding.

• Examples: LZW, LZ77, Sequitur

• Applications: Unix Compress, gzip, GIF

6

LZW Encoding Algorithm

Repeat
 find the longest match w in the dictionary
 output the index of w
 put wa in the dictionary where a was the
 unmatched symbol

2

7

LZW Encoding Example (1)
Dictionary

0 a
1 b

a b a b a b a b a

8

LZW Encoding Example (2)
Dictionary

0 a
1 b
2 ab

a b a b a b a b a
0

9

LZW Encoding Example (3)
Dictionary

0 a
1 b
2 ab
3 ba

a b a b a b a b a
0 1

10

LZW Encoding Example (4)
Dictionary

0 a
1 b
2 ab
3 ba
4 aba

a b a b a b a b a
0 1 2

11

LZW Encoding Example (5)
Dictionary

0 a
1 b
2 ab
3 ba
4 aba
5 abab

a b a b a b a b a
0 1 2 4

12

LZW Encoding Example (6)
Dictionary

0 a
1 b
2 ab
3 ba
4 aba
5 abab

a b a b a b a b a
0 1 2 4 3

3

13

LZW Decoding Algorithm
• Emulate the encoder in building the dictionary.

Decoder is slightly behind the encoder.

initialize dictionary;
decode first index to w;
put w? in dictionary;
repeat
 decode the first symbol s of the index;
 complete the previous dictionary entry with s;
 finish decoding the remainder of the index;
 put w? in the dictionary where w was just decoded;

14

LZW Decoding Example (1)
Dictionary

0 a
1 b
2 a?

0 1 2 4 3 6
a

15

LZW Decoding Example (2a)
Dictionary

0 a
1 b
2 ab

0 1 2 4 3 6
a b

16

LZW Decoding Example (2b)
Dictionary

0 a
1 b
2 ab
3 b?

0 1 2 4 3 6
a b

17

LZW Decoding Example (3a)
Dictionary

0 a
1 b
2 ab
3 ba

0 1 2 4 3 6
a b a

18

LZW Decoding Example (3b)
Dictionary

0 a
1 b
2 ab
3 ba
4 ab?

0 1 2 4 3 6
a b ab

4

19

LZW Decoding Example (4a)
Dictionary

0 a
1 b
2 ab
3 ba
4 aba

0 1 2 4 3 6
a b ab a

20

LZW Decoding Example (4b)
Dictionary

0 a
1 b
2 ab
3 ba
4 aba
5 aba?

0 1 2 4 3 6
a b ab aba

21

LZW Decoding Example (5a)
Dictionary

0 a
1 b
2 ab
3 ba
4 aba
5 abab

0 1 2 4 3 6
a b ab aba b

22

LZW Decoding Example (5b)
Dictionary

0 a
1 b
2 ab
3 ba
4 aba
5 abab
6 ba?

0 1 2 4 3 6
a b ab aba ba

23

LZW Decoding Example (6a)
Dictionary

0 a
1 b
2 ab
3 ba
4 aba
5 abab
6 bab

0 1 2 4 3 6
a b ab aba ba b

24

LZW Decoding Example (6b)
Dictionary

0 a
1 b
2 ab
3 ba
4 aba
5 abab
6 bab
7 bab?

0 1 2 4 3 6
a b ab aba ba bab

5

25

Decoding Exercise

Base Dictionary

0 a
1 b
2 c
3 d
4 r

0 1 4 0 2 0 3 5 7

26

Trie Data Structure for Encoder’s
Dictionary

• Fredkin (1960)

a b c d r
0 1 2 3 4

b 5 r 6c 8 a 9d 10 a 11

r 12

a 7

a 13

a 14

0 a 9 ca
1 b 10 ad
2 c 11 da
3 d 12 abr
4 r 13 raa
5 ab 14 abra
6 br
7 ra
8 ac

27

Encoder Uses a Trie (1)

a b r a c a d a b r a a b r a c a d a b r a
0 1 4 0 2 0 3 5 7 12

a b c d r
0 1 2 3 4

b 5 r 6c 8 a 9d 10 a 11

r 12

a 7

a 13

a 14

28

Encoder Uses a Trie (2)

a b r a c a d a b r a a b r a c a d a b r a
0 1 4 0 2 0 3 5 7 12 8

a b c d r
0 1 2 3 4

b 5 r 6c 8 a 9d 10 a 11

r 12

a 7

a 13

a 14

a 15

29

Decoder’s Data Structure

• Simply an array of strings

0 a 9 ca
1 b 10 ad
2 c 11 da
3 d 12 abr
4 r 13 raa
5 ab 14 abr?
6 br
7 ra
8 ac

0 1 4 0 2 0 3 5 7 12 8 ...
a b r a c a d ab ra abr

30

Bounded Size Dictionary

• Bounded Size Dictionary
– n bits of index allows a dictionary of size 2n

– Doubtful that long entries in the dictionary will be
useful.

• Strategies when the dictionary reaches its limit.
1. Don’t add more, just use what is there.

2. Throw it away and start a new dictionary.

3. Double the dictionary, adding one more bit to indices.
4. Throw out the least recently visited entry to make

room for the new entry.

6

31

Implementing the LRV Strategy

a b r a c a d a b r a a b r a c a d a b r a
0 1 4 0 2 0 3 5 7 12

a b c d r
0 1 2 3 4

b 5 r 6c 8 a 9d 10 a 11

r 12

a 7

a 13

a 14

Most Recent

Least Recent

Doubly linked queue
Circular sibling lists
Parent pointers

32

Implementing the LRV Strategy

a b r a c a d a b r a a b r a c a d a b r a
0 1 4 0 2 0 3 5 7 12 8

a b c d r
0 1 2 3 4

b 5

a 6

c 8 a 9d 10 a 11

r 12

a 7

a 13

a 14

Most Recent

Least Recent

Doubly linked queue
Circular sibling lists
Parent pointers

33

Notes on LZW

• Extremely effective when there are repeated
patterns in the data that are widely spread.

• Negative: Creates entries in the dictionary
that may never be used.

• Applications:
– Unix compress, GIF, V.42 bis modem standard

34

LZ77

• Ziv and Lempel, 1977

• Dictionary is implicit

• Use the string coded so far as a dictionary.

• Given that x1x2...xn has been coded we want
to code xn+1xn+2...xn+k for the largest k
possible.

35

Solution A

• If xn+1xn+2...xn+k is a substring of x1x2...xn then
xn+1xn+2...xn+k can be coded by <j,k> where j is
the beginning of the match.

• Example

ababababa babababababababab....
coded

ababababa babababa babababab....
<2,8>

36

Solution A Problem

• What if there is no match at all in the
dictionary?

• Solution B. Send tuples <j,k,x> where
– If k = 0 then x is the unmatched symbol
– If k > 0 then the match starts at j and is k long and

the unmatched symbol is x.

ababababa cabababababababab....
coded

7

37

Solution B

• If xn+1xn+2...xn+k is a substring of x1x2...xn and
xn+1xn+2... xn+kxn+k+1 is not then xn+1xn+2...xn+k
xn+k+1 can be coded by
 <j,k, xn+k+1 >
where j is the beginning of the match.

• Examples

ababababa cabababababababab....

ababababa c ababababab ababab....
<0,0,c> <1,9,b>

38

Solution B Example

a bababababababababababab.....
<0,0,a>

a b ababababababababababab.....
<0,0,b>

a b aba bababababababababab.....
<1,2,a>

a b aba babab ababababababab.....
<2,4,b>

a b aba babab abababababa bab.....
<1,10,a>

39

Surprise Code!

a bababababababababababab$
<0,0,a>

a b ababababababababababab$
<0,0,b>

a b ababababababababababab$
<1,22,$>

40

Surprise Decoding

<0,0,a><0,0,b><1,22,$>

<0,0,a> a
<0,0,b> b
<1,22,$> a
<2,21,$> b
<3,20,$> a
<4,19,$> b
...
<22,1,$> b
<23,0,$> $

41

Surprise Decoding

<0,0,a><0,0,b><1,22,$>

<0,0,a> a
<0,0,b> b
<1,22,$> a
<2,21,$> b
<3,20,$> a
<4,19,$> b
...
<22,1,$> b
<23,0,$> $

42

Solution C

• The matching string can include part of itself!

• If xn+1xn+2...xn+k is a substring of
 x1x2...xn xn+1xn+2...xn+k
that begins at j < n and xn+1xn+2... xn+kxn+k+1 is
not then xn+1xn+2...xn+k xn+k+1 can be coded by
 <j,k, xn+k+1 >

8

43

In Class Exercise

• Use Solution C to code the string
– aaaabaaabaabab$

44

Bounded Buffer – Sliding Window

• We want the triples <j,k,x> to be of bounded size. To
achieve this we use bounded buffers.
– Search buffer of size s is the symbols xn-s+1...xn

j is then the offset into the buffer.

– Look-ahead buffer of size t is the symbols xn+1...xn+t

• Match pointer can start in search buffer and go into the
look-ahead buffer but no farther.

aaaabababaaab$
search buffer look-ahead buffer
 coded uncoded

match pointer

tuple
<2,5,a>

Sliding window

uncoded text pointer

45

Search in the Sliding Window

aaaabababaaab$

aaaabababaaab$

aaaabababaaab$

offset length
 1 0

 2 1

 2 2

 2 3

 2 4

 2 5

aaaabababaaab$

aaaabababaaab$

aaaabababaaab$
tuple
<2,5,a>

46

Coding Example

 tuple
<0,0,a>
<1,3,b>
<2,5,a>
<4,2,$>

aaaabababaaab$
aaaabababaaab$
aaaabababaaab$
aaaabababaaab$

s = 4, t = 4, a = 3

47

Coding the Tuples

• Simple fixed length code

• Variable length code using adaptive Huffman
or arithmetic code on Tuples
– Two passes, first to create the tuples, second to

code the tuples
– One pass, by pipelining tuples into a variable

length coder

 alog1)t(slog1)(slog 222 +++++

s = 4, t = 4, a = 3 tuple fixed code
<2,5,a> 010 0101 00

48

Zip and Gzip

• Search Window
– Search buffer 32KB
– Look-ahead buffer 258 Bytes

• How to store such a large dictionary
– Hash table that stores the starting positions for all

three byte sequences.
– Hash table uses chaining with newest entries at the

beginning of the chain. Stale entries can be ignored.

• Second pass for Huffman coding of tuples.
• Coding done in blocks to avoid disk accesses.

9

49

Example

aaaabababaaabaaaababababaaabba$

2 1

6

5

4

3

8

7

10

9

11

aba

12

Offset =12 – 8 = 4
Length = 5
Tuple = <4,5,a>

50

Example

aaaabababaaabaaaababababaaabba$

14 10

12

5

8

11

17

7

15

13

16

18

6

9

2 1

3

4

bab
No match
Tuple = <0,0,b>

51

Notes on LZ77

• Very popular especially in unix world

• Many variants and implementations
– Zip, Gzip, PNG, PKZip,Lharc, ARJ

• Tends to work better than LZW
– LZW has dictionary entries that are never used
– LZW has past strings that are not in the dictionary

– LZ77 has an implicit dictionary. Common tuples
are coded with few bits.

52

Huffman Coding
• Huffman (1951)

• Uses frequencies of symbols in a string to build a variable rate
prefix code.
– Each symbol is mapped to a binary string.

– More frequent symbols have shorter codes.

– No code is a prefix of another.

• Example:
 a 0
 b 100
 c 101
 d 11

b c

a

d

0

0

0

1

1

1

53

Variable Rate Code Example

• Example: a 0, b 100, c 101, d 11

• Coding:
– aabddcaa = 16 bits

– 0 0 100 11 11 101 0 0= 14 bits

• Prefix code ensures unique decodability.
– 00100111110100

– a a b d d c a a

54

Cost of a Huffman Tree
• Let p1, p2, ... , pm be the probabilities for the

symbols a1, a2, ... ,am, respectively.
• Define the cost of the Huffman tree T to be

where ri is the length of the path from the root
to ai.

• C(T) is the expected length of the code of a
symbol coded by the tree T. C(T) is the bit
rate of the code.

i

m

1i
irpC(T) ∑

=

=

10

55

Example of Cost

• Example: a 1/2, b 1/8, c 1/8, d 1/4

b c

a

d

0

0

0

1

1

1

T

C(T) = 1 x 1/2 + 3 x 1/8 + 3 x 1/8 + 2 x 1/4 = 1.75
a b c d

56

Huffman Tree

• Input: Probabilities p1, p2, ... , pm for symbols
a1, a2, ... ,am, respectively.

• Output: A tree that minimizes the average
number of bits (bit rate) to code a symbol.
That is, minimizes

where ri is the length of the path from the root
to ai. This is the Huffman tree or Huffman
code

i

m

1i
irpHC(T) ∑

=

= bit rate

57

Optimality Principle 1
• In a Huffman tree a lowest probability symbol

has maximum distance from the root.
– If not exchanging a lowest probability symbol with

one at maximum distance will lower the cost.

q

p

T

q

T’

p

C(T’) = C(T) + hp - hq + kq - kp = C(T) - (h-k)(q-p) < C(T)

p smallest
p < q
k < h

h

k

58

Optimality Principle 2

• The second lowest probability is a sibling of
the the smallest in some Huffman tree.
– If not, we can move it there not raising the cost.

p

q

T p smallest
q 2nd smallest

q < r
k < h

r p

r

T’

q

C(T’) = C(T) + hq - hr + kr - kq = C(T) - (h-k)(r-q) < C(T)

h

k

59

Optimality Principle 3
• Assuming we have a Huffman tree T whose two

lowest probability symbols are siblings at
maximum depth, they can be replaced by a new
symbol whose probability is the sum of their
probabilities.
– The resulting tree is optimal for the new symbol set.

p

T

q

T’

q+p

p smallest
q 2nd smallest

C(T’) = C(T) + (h-1)(p+q) - hp -hq = C(T) - (p+q)

h

60

Optimality Principle 3 (cont’)

• If T’ were not optimal then we could find a
lower cost tree T’’. This will lead to a lower
cost tree T’’’ for the original alphabet.

T’

q+p

T’’

q+p

T’’’

q p

C(T’’’) = C(T’’) + p + q < C(T’) + p + q = C(T) which is a contradiction

11

61

Recursive Huffman Tree Algorithm

1. If there is just one symbol, a tree with one
node is optimal. Otherwise

2. Find the two lowest probability symbols with
probabilities p and q respectively.

3. Replace these with a new symbol with
probability p + q.

4. Solve the problem recursively for new symbols.
5. Replace the leaf with the new symbol with an

internal node with two children with the old symbols.

62

Iterative Huffman Tree Algorithm
form a node for each symbol ai with weight pi;
insert the nodes in a min priority queue ordered by probability;
while the priority queue has more than one element do
 min1 := delete-min;
 min2 := delete-min;
 create a new node n;
 n.weight := min1.weight + min2.weight;
 n.left := min1;
 n.right := min2;
 insert(n)
return the last node in the priority queue.

63

Example of Huffman Tree Algorithm (1)

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

a b c d e
.4 .1 .3 .1 .1

a

b

c d

e

.4 .3 .1.2

64

Example of Huffman Tree Algorithm (2)

a

b

c d

e

.4 .3 .1.2

a

b

c

d

e

.4 .3.3

65

Example of Huffman Tree Algorithm (3)

a

b

c

d

e

.4 .3.3
a

b

c

d

e

.4 .6

66

Example of Huffman Tree Algorithm (4)

a

b

c

d

e

.4 .6

a

b

c

d

e

1

12

67

Huffman Code

a

b

c

d

e

a 0
b 1110
c 10
d 110
e 1111

0 1

1

1

1

0

0

0

average number of bits per symbol is
.4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4 = 2.1

68

Optimal Huffman Code vs. Entropy

Entropy

H = -(.4 x log2(.4) + .1 x log2(.1) + .3 x log2(.3)
 + .1 x log2(.1) + .1 x log2(.1))
 = 2.05 bits per symbol

Huffman Code

HC = .4 x 1 + .1 x 4 + .3 x 2 + .1 x 3 + .1 x 4
 = 2.1 bits per symbol
 pretty good!

• P(a) =.4, P(b)=.1, P(c)=.3, P(d)=.1, P(e)=.1

69

In Class Exercise

• P(a) = 1/2, P(b) = 1/4, P(c) = 1/8, P(d) = 1/16,
P(e) = 1/16

• Compute the Huffman tree and its bit rate.

• Compute the Entropy

• Compare

• Hint: For the tree change probabilities to be
integers: a:8, b:4, c:2, d:1, e:1. Normalize at
the end.

70

Quality of the Huffman Code

• The Huffman code is within one bit of the entropy lower bound.

• Huffman code does not work well with a two symbol alphabet.
– Example: P(0) = 1/100, P(1) = 99/100

– HC = 1 bits/symbol

– H = -((1/100)*log2(1/100) + (99/100)log2(99/100))
 = .08 bits/symbol

1HHCH +≤≤

1 0

10

71

Powers of Two

• If all the probabilities are powers of two then

• Proof by induction on the number of symbols.
Let p1 < p2 < ... < pn be the probabilities that add up

to 1
If n = 1 then HC = H (both are zero).
If n > 1 then p1 = p2 = 2-k for some k, otherwise the

sum cannot add up to 1.
Combine the first two symbols into a new symbol of

probability 2-k + 2-k = 2-k+1.

HHC =

72

Powers of Two (Cont.)
By the induction hypothesis

)p(p)p,...,p,H(p

)p(p)(plogp

22)(plogp)(2log2)(2log2

)(plogp1))(2(log2

)(plogp)(2log2

)(plogp)p(p)logp(p-

)p,...,p,pH(p)p,...,p,pHC(p

21n21

21

n

1i
i2i

kk
n

3i
i2i

k
2

kk
2

k

n

3i
i2i

k
2

1k

n

3i
i2i

1k
2

1k

n

3i
i2i21221

n321n321

+−=

+−−=

−−−−−=

−+−=

−−=

−++=

+=+

∑

∑

∑

∑

∑

=

−−

=

−−−−

=

−+−

=

+−+−

=

13

73

Powers of Two (Cont.)
By the previous page,

By the properties of Huffman trees (principle 3),

Hence,

)p(p)p,...,p,H(p)p,...,p,pHC(p 21n21n321 +−=+

)p(p)p,...,p,pHC(p)p,...,p,HC(p 21n321n21 +++=

)p,...,p,H(p)p,...,p,HC(p n21n21 =

74

Extending the Alphabet
• Assuming independence P(ab) = P(a)P(b), so

we can lump symbols together.

• Example: P(0) = 1/100, P(1) = 99/100
– P(00) = 1/10000, P(01) = P(10) = 99/10000,

P(11) = 9801/10000.

01

11

10

00

1

1

1

0

0

0

HC = 1.03 bits/symbol (2 bit symbol)
 = .515 bits/bit

Still not that close to H = .08 bits/bit

75

Quality of Extended Alphabet

• Suppose we extend the alphabet to symbols
of length k then

• Pros and Cons of Extending the alphabet
+ Better compression
 - 2k symbols

 - padding needed to make the length of the input
divisible by k

1/kHHCH +≤≤

76

Huffman Codes with Context
• Suppose we add a one symbol context. That is in compressing

a string x1x2...xn we want to take into account xk-1 when encoding
xk.
– New model, so entropy based on just independent probabilities of

the symbols doesn’t hold. The new entropy model (2nd order
entropy) has for each symbol a probability for each other symbol
following it.

– Example: {a,b,c}

 a b c
a .4 .2 .4
b .1 .9 0
c .1 .1 .8

prev

next

77

Multiple Codes

 a b c
a .4 .2 .4
b .1 .9 0
c .1 .1 .8

prev

next

a

b

1

1

0

0

c

b

10

c

a

1

1

0

0

b

a

a b c

a b b a c c

Code for first symbol
a 00
b 01
c 10

00 00 0 1 01 0
.2

.4

.4

.9 .1

.1.1

.8

78

Complexity of Huffman Code Design

• Time to design Huffman Code is O(n log n)
where n is the number of symbols.
– Each step consists of a constant number of priority

queue operations (2 deletemin’s and 1 insert)

14

79

Approaches to Huffman Codes

1. Frequencies computed for each input
– Must transmit the Huffman code or frequencies as well

as the compressed input
– Requires two passes

2. Fixed Huffman tree designed from training data
– Do not have to transmit the Huffman tree because it is

known to the decoder.
– H.263 video coder

3. Adaptive Huffman code
– One pass
– Huffman tree changes as frequencies change

