CSE 326: Data Structures
Hash Tables

James Fogarty
Autumn 2007
Lecture 14

Dictionary Implementations So Far

Unsorted
linked list

Sorted
Array

BST

AVL

Splay

(amortized)

Insert

Find

Delete

Hash Tables

e Constant time accesses! hash table

A hash table is an array of some 0

fixed size, usually a prime number.

e General 1dea:

hash function:
h(K)
>

key space (e.g., integers, strings) TableSize -1

Example

key space = integers
TableSize =10

h(K) = Kmod 10

Insert: 7, 18, 41, 94

© 00 N O O &~ W0 NN - O

Another Example

key space = integers
TableSize =6

h(K) = Kmod 6

or A LW NN - O

Insert: 7, 18, 41, 34

Hash Functions

1. simple/fast to compute,

2. Avold collisions
3. have keys distributed evenly among cells.

Perfect Hash function:

Sample Hash Functions:

key space = strings
S=S5;S;Sy .-+ Sy

h(s) = s, mod TableSize

k —1
h(s) = [Z > j mod TableSize

n(s) = (kz

1

s -37 j mod TableSize

0

Collision Resolution

Collision: when two keys map to the same
location In the hash table.

wo ways to resolve collisions:
1. Separate Chaining

2. Open Addressing (linear probing,
quadratic probing, double hashing)

© 00 N O O &~ W0 NN - O

Separate Chaining

Insert:

10

22
107

12

42

e Separate chaining:

All keys that map to

the same hash value

are kept in a list (or

“bucket”).

Analysis of find

o Defn: The load factor, A, of a hash table Is
the ratio: N <« no. of elements

M < table size

For separate chaining, A = average # of
elements in a bucket

e Unsuccessful find:

e Successful find:

10

How big should the hash table be?

* For Separate Chaining:

11

tableSize: Why Prime?

Real-life data tends

e Suppose
— data stored In hash table: 7160, 493, 60, 55, 321,
900, 810
— tableSize = 10

data hashesto 0, 3,0,5,1,0,0

— tableSize = 11
data hashes to 10, 9,5,0, 2,9, 7

to have a pattern

Being a multiple of
11 i1s usually not the
pattern ©

12

© 00 N O O &~ W NN - O

Open Addressing

Insert:
38

19

8

109
10

e |_Inear Probing:

after checking spot

h(k), try spot

h(k)+1, if that is
full, try h(k)+2,

then h(k)+3, etc.

13

Terminology Alert!

“Open Hashing” “Closed Hashing”
equals equals
weiss ““‘Separate Chaining” “Open Addressing”

14

Linear Probing

f(i) = |

* Probe sequence:

0t pro
1t pro
2t pro

e = h(k) mod TableSize
ne = (h(k) + 1) mod TableSize

e = (h(k) + 2) mod TableSize

it probe = (h(k) + i) mod TableSize

15

Linear Probing — Clustering

o jeyeim @S

e e

LIS
- sy eIt

L e e

LJLJLJLJMLJEJM\!JLJEJEJLJLJ
. !

no coIIision—»uuwmmmuUﬂﬂm

L e
al» 'L!JL_IIIL—-II‘L.J'

ojie®)
mummmmmuﬁﬁwuuu el
LIt »|\®
mmmumm@éuuwmmu
|
et

collision in small cluster

collision in large cluster

[R. Sedgewick]

16

LLoad Factor In Linear Probing

For any A < 1, linear probing will find an empty slot

Expected # of probes (for large table sizes)
— successful search: 1(1]

2

1+m

— unsuccessful search: 1[1 1 j

Y

Linear probing suffers from primary clustering
Performance quickly degrades for A > 1/2

17

Quadratic Probing

f(i) = i2

* Probe sequence:

oth
1th
oth
3th

0ro
Oro
0ro

Oro

ne = (
ne = (
ne = (

(
(

(

K) + 1) moc
K) + 4) moc

K) + 9) moo

Less likely
to encounter
Primary
Clustering

e = h(k) mod TableSize
TableSize
TableSize

"ableSize

it probe = (h(K) + i2) mod TableSize

18

© 00 N O O &~ W NN - O

Quadratic Probing

Insert:

89

18
49

58

79

19

0

1

2

76

Quadratic Probing Example
Insert(76) ' '
76%7 =06

Insert(40) Insert(48) Insert(5) Insert(55)

40%7 =5 48%7 = 6 5%7 =5 55%7 = 6
Insert(47)
But... 47047 = &

20

Quadratic Probing:

Success guarantee for A <12

 If size I1s prime and A < Y2, then quadratic
probing will find an empty slot In size/2
probes or fewer.

—show forall0 < i1,j < size/2andi = j

(h(xX) + 1?2) mod size # (h(xX) + j%)
mod size

— by contradiction: suppose that for some 1 # |
(h(xX) + 1%2) mod size = (h(xX) + jJ2)
mod size
= 12 mod size = j2 mod size =

Quadratic Probing: Properties

* For any A <%, quadratic probing will find an
empty slot; for bigger A, quadratic probing may
find a slot

e Quadratic probing does not suffer from primary
clustering: keys hashing to the same area are
not bad

e But what about keys that hash to the same spot?

— Secondary Clustering! .

Double Hashing

f(1) = 1™ g(k)
where g Is a second hash function

* Probe sequence:
Ot probe = h(k) mod TableSize
1t probe = (h(k) + g(k)) mod TableSize
2t probe = (h(k) + 2*g(k)) mod TableSize
3t probe = (h(k) + 3*g(k)) mod TableSize

it probe = (h(k) + i*g(k)) mod TableSize

23

oo A W N PF O

6

Double Hashing Example

h(k) =k mod 7 and g(k) =5 — (k mod 5)

76

76

Probes 1

O o1l A WO N P O

93

93

76

O o1l A W N P O

40

93

40

76

o o1l A WO N P O

47

47

93

40

76

O o1l A W N P O

10

47

93

10

40

76

O o1l A WO N P O

55

47

93

10

55

40

76

24

Resolving Collisions with Double Hashing

-

© 00 N OO O & W N B

Hash Functions:
H(K) = K mod M
H,(K) =1 + ((K/M) mod (M-1))
M =

Insert these values into the hash table
In this order. Resolve any collisions
with double hashing:

13
28
33
147
43

25

Rehashing

Idea: When the table gets too full, create a
bigger table (usually 2x as large) and hash
all the items from the original table into the

new table.
 \When to rehash?

— half full (A =0.5)
— when an insertion fails
— some other threshold

e Cost of rehashing?

26

Java hashCode() Method

e Class Object defines a hashCode method
— Intent: returns a suitable hashcode for the object

— Result is arbitrary int; must scale to fit a hash
table (e.g. obj.hashCode() % nBuckets)

— Used by collection classes like HashMap

» Classes should override with calculation
appropriate for instances of the class

— Calculation should involve semantically
“significant” fields of objects

27

hashCode() and equals()

o To work right, particularly with collection
classes like HashMap, hashCode() and
equals() must obey this rule:

If a.equals(b) then it must be true that
a.hashCode() == b.hashCode()
— Why?
* Reverse Is not required

28

Hashing Summary

e Hashing is one of the most important data
structures.

* Hashing has many applications where
operations are limited to find, insert, and
delete.

* Dynamic hash tables have good amortized
complexity.

29

