
1

CSE 326: Data Structures

Asymptotic Analysis

Hal Perkins
Spring 2007

Lectures 2 & 3

4/5/2007 2

Today’s Outline

• Admin: Project 1
• Asymptotic analysis

4/5/2007 3

Office Hours, etc.
The plan so far…
Hal Perkins MW 3:40-4:30 CSE 548

(except today)
Andy Sun Tue 12:30-1:30 CSE 002 lab
Marius Nita Thur 2:30-3:20 CSE 3rd floor breakout
Or by appointment.
(Comments? Conflicts?)

TODO : Important!
1. Subscribe to mailing list if you haven’t
2. Hand in info sheet

4/5/2007 4

Project 1 – Sound Blaster!
Play your favorite song in reverse!

Aim:
1. Implement stack ADT two different ways (array, linked

list)
2. Use to reverse a sound file

Due: Wed, April 4
Electronic: at midnight, April 4
Hardcopy: in sections Thursday

2

4/5/2007 5

Comparing Two Algorithms

4/5/2007 6

What we want
• Rough Estimate
• Ignores Details

• Characterize and compare algorithms independent
of implementation details
– (coding tricks, machine speed, compiler optimizations)

4/5/2007 7

Analysis of Algorithms

• Efficiency measure
– how long the program runs time complexity
– how much memory it uses space complexity

• For today, we’ll focus on time complexity only

• Analysis is in terms of the problem size
– Size depends on problem being solved
– Typical: size of data structure, magnitude of some numeric

parameter, …

4/5/2007 8

Asymptotic Analysis

• Complexity as a function of input size n
T(n) = 4n + 5
T(n) = 0.5 n log n - 2n + 7
T(n) = 2n + n3 + 3n

• What happens as n grows?

3

4/5/2007 9

Why Asymptotic Analysis?
• Most algorithms are fast for small n

– Time difference too small to be noticeable
– External things dominate (OS, disk I/O, …)

• BUT n is often large in practice
– Databases, internet, graphics, …

• Time difference really shows up as n grows!

4/5/2007 10

Analyzing Code

Basic Java operations
Consecutive statements

Conditionals
Loops

Function calls
Recursive functions

Constant time
Sum of times
Larger branch plus test
Sum of iterations
Cost of function body
Solve recurrence relation

Let’s try it!

4/5/2007 11

Algorithm Analysis Examples
• Consider the following

program segment:
x:= 0;
for i = 1 to N do

for j = 1 to i do
x := x + 1;

• What is the value of x at
the end?
(equivalent: how many
times is x := x+1 executed
as a function of N?)

4/5/2007 12

Analyzing the Loop

• Total number of times x is incremented is
executed =

• Congratulations - You’ve just analyzed your first
program!
– Running time of the program is proportional to

N(N+1)/2 for all N

∑
=

+
==+++

N

1i 2
1)N(Ni...321

4

4/5/2007 13

Another Example: Nested Loops
for i = 1 to n do

for j = 1 to n do
sum = sum + 1

for i = 1 to n do
for j = 1 to n do

sum = sum + 1

4/5/2007 14

And Another: Nested Loops
for i = 1 to n do
for j = 1 to n do
if (cond) {

do_stuff(sum)
} else {

for k = 1 to n*n
sum += 1

4/5/2007 15

Exercise - Searching

bool ArrayFind(int array[], int n,
int key){
// Insert your algorithm here

2 3 5 16 37 50 73 75 126

What algorithm would you choose
to implement this code snippet? 4/5/2007 16

Linear Search Analysis
bool LinearArrayFind(int array[],

int n,
int key) {

for(int i = 0; i < n; i++) {
if(array[i] == key)

// Found it!
return true;

}
return false;

}

Best Case:

Worst Case:

5

4/5/2007 17

Binary Search Analysis
bool BinArrayFind(int array[], int low,

int high, int key) {
// The subarray is empty
if(low > high) return false;

// Search this subarray recursively
int mid = (high + low) / 2;
if(key == array[mid]) {

return true;
} else if(key < array[mid]) {

return BinArrayFind(array, low,
mid-1, key);

} else {
return BinArrayFind(array, mid+1,

high, key);
}

Best case:

Worst case:

4/5/2007 18

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?

2. “Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

3. Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

4/5/2007 19

Linear Search vs Binary Search

Worst Case

Best Case

Binary SearchLinear Search

So … which algorithm is better?
What tradeoffs can you make?

4/5/2007 20

Fast Computer vs. Slow Computer

6

4/5/2007 21

Fast Computer vs. Smart Programmer
(round 1)

4/5/2007 22

Fast Computer vs. Smart Programmer
(round 2)

4/5/2007 23

Asymptotic Analysis
• Asymptotic analysis looks at the order of the

running time of the algorithm
– A valuable tool when the input gets “large”
– Ignores the effects of different machines or different

implementations of the same algorithm

• Intuitively, to find the asymptotic runtime, throw
away the constants and low-order terms
– Linear search is T(n) = 3n + 2 ∈ O(n)
– Binary search is T(n) = 4 log2n + 4 ∈ O(log n)

Remember: the fastest algorithm has the
slowest growing function for its runtime 4/5/2007 24

Asymptotic Analysis
• Eliminate low order terms

– 4n + 5 ⇒
– 0.5 n log n + 2n + 7 ⇒
– n3 + 2n + 3n ⇒

• Eliminate coefficients
– 4n ⇒
– 0.5 n log n ⇒
– n log n2 =>

7

4/5/2007 25

Order Notation: Intuition

Although not yet apparent, as n gets “sufficiently
large”, f(n) will be “greater than or equal to” g(n)

f(n) = n3 + 2n2

g(n) = 100n2 + 1000

4/5/2007 26

Order Notation
• Upper bound: T(n) = O(f(n)) Big-O

Exist constants c and n’ such that
T(n) ≤ c f(n) for all n ≥ n’

• Lower bound: T(n) = Ω(g(n)) Omega
Exist constants c and n’ such that

T(n) ≥ c g(n) for all n ≥ n’

• Tight bound: T(n) = θ(f(n)) Theta
When both hold:

T(n) = O(f(n))
T(n) = Ω(f(n))

4/5/2007 27

O(f(n)) Definition
O(f(n)) : a set or class of functions

g(n) ∈ O(f(n)) iff there exist consts c and n0 such that:

g(n) ≤ c f(n) for all n ≥ n0

Example:
100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19
So g(n) ∈ O(f(n))

Sometimes, you’ll see the notation g(n) = O(f(n)). This is
equivalent to g(n) ∈ O(f(n)).

Remember: notation O(f(n)) = g(n) is meaningless!
4/5/2007 28

Order Notation: Example

100n2 + 1000 ≤ 5 (n3 + 2n2) for all n ≥ 19
So f(n) ∈ O(g(n))

8

4/5/2007 29

Big-O: Common Names

– constant: O(1)
– logarithmic: O(log n) (logkn, log n2 ∈ O(log n))
– linear: O(n)
– log-linear: O(n log n)
– quadratic: O(n2)
– cubic: O(n3)
– polynomial: O(nk) (k is a constant)
– exponential: O(cn) (c is a constant > 1)

4/5/2007 30

Know Your Complexity Classes!

4/5/2007 31

Meet the Family
• O(f(n)) is the set of all functions asymptotically

less than or equal to f(n)
– o(f(n)) is the set of all functions asymptotically

strictly less than f(n)

• Ω(f(n)) is the set of all functions asymptotically
greater than or equal to f(n)
– ω(f(n)) is the set of all functions asymptotically

strictly greater than f(n)

• θ(f(n)) is the set of all functions asymptotically
equal to f(n)

4/5/2007 32

Meet the Family, Formally
• g(n) ∈ O(f(n)) iff

There exist c and n0 such that g(n) ≤ c f(n) for all n ≥ n0
– g(n) ∈ o(f(n)) iff

There exists a n0 such that g(n) < c f(n) for all c and n ≥ n0

• g(n) ∈ Ω(f(n)) iff
There exist c and n0 such that g(n) ≥ c f(n) for all n ≥ n0
– g(n) ∈ ω(f(n)) iff

There exists a n0 such that g(n) > c f(n) for all c and n ≥ n0

• g(n) ∈ θ(f(n)) iff
g(n) ∈ O(f(n)) and g(n) ∈ Ω(f(n))

Equivalent to: limn→∞ g(n)/f(n) = 0

Equivalent to: limn→∞ g(n)/f(n) = ∞

9

4/5/2007 33

Big-Omega et al. Intuitively

>ω
<o
=θ

≥Ω
≤O

Mathematics RelationAsymptotic Notation

4/5/2007 34

Perspective: Kinds of Analysis
• Running time may depend on actual data input, not

just length of input
• Distinguish

– worst case
• your worst enemy is choosing input

– best case
– average case

• assumes some probabilistic distribution of inputs
– amortized

• average time over many operations

4/5/2007 35

Types of Analysis
Two orthogonal axes:

– bound flavor
• upper bound (O, o)
• lower bound (Ω, ω)
• asymptotically tight (θ)

– analysis case
• worst case (adversary)
• average case
• best case
• “amortized”

4/5/2007 36

Pros and Cons of Asymptotic
Analysis

