CSE 326: Data Structures

Asymptotic Analysis

Hal Perkins
Spring 2007
Lectures 2 \& 3

Office Hours, etc.

The plan so far...

Hal PerkinsMW 3:40-4:30 (except today)	CSE 548
Andy Sun	
Tue 12:30-1:30	CSE 002 lab
Marius Nita Thur 2:30-3:20	CSE 3rd floor breakout
Or by appointment.	
(Comments? Conflicts?)	
TODO : Important!	
1. Subscribe to mailing list if you haven't	
2. Hand in info sheet	

Today's Outline

- Admin: Project 1
- Asymptotic analysis

Project 1 - Sound Blaster!

Play your favorite song in reverse!
Aim:

1. Implement stack ADT two different ways (array, linked list)
2. Use to reverse a sound file

Due: Wed, April 4
Electronic: at midnight, April 4
Hardcopy: in sections Thursday

Comparing Two Algorithms

4/5/2007

What we want

- Rough Estimate
- Ignores Details
- Characterize and compare algorithms independent of implementation details
- (coding tricks, machine speed, compiler optimizations)

Analysis of Algorithms

- Efficiency measure
- how long the program runs time complexity
- how much memory it uses space complexity
- For today, we'll focus on time complexity only
- Analysis is in terms of the problem size
- Size depends on problem being solved
- Typical: size of data structure, magnitude of some numeric parameter, ...

4/5/2007
7

Asymptotic Analysis

- Complexity as a function of input size n

$$
\begin{aligned}
& \mathrm{T}(n)=4 n+5 \\
& \mathrm{~T}(n)=0.5 n \log n-2 n+7 \\
& \mathrm{~T}(n)=2^{n}+n^{3}+3 n
\end{aligned}
$$

- What happens as n grows?

Why Asymptotic Analysis?

- Most algorithms are fast for small n
- Time difference too small to be noticeable
- External things dominate (OS, disk I/O, ...)
- BUT n is often large in practice
- Databases, internet, graphics, ...
- Time difference really shows up as n grows!

4/5/2007

Algorithm Analysis Examples

- Consider the following
program segment:
$\mathrm{x}:=0$;
for $\mathrm{i}=1$ to N do for $\mathrm{j}=1$ to 1 do

$$
x:=x+1 ;
$$

- What is the value of x at the end?
(equivalent: how many
times is $\mathrm{x}:=\mathrm{x}+1$ executed
as a function of N ?)

Analyzing Code

Basic Java operations	Constant time
Consecutive statements	Sum of times
Conditionals	Larger branch plus test
Loops	Sum of iterations
Function calls	Cost of function body
Recursive functions	Solve recurrence relation

Let's try it!

- Total number of times x is incremented is executed $=$

Analyzing the Loop

$$
1+2+3+\ldots=\sum_{i=1}^{N} i=\frac{N(N+1)}{2}
$$

- Congratulations - You’ve just analyzed your first program!
- Running time of the program is proportional to $\mathrm{N}(\mathrm{N}+1) / 2$ for all N

Another Example: Nested Loops

for $i=1$ to n do
for $j=1$ to n do
sum $=$ sum +1
for $i=1$ to n do
for $j=1$ to n do
sum $=$ sum +1

4/5/2007

```
```

for i = 1 to n do

```
```

for i = 1 to n do
for j = 1 to n do
for j = 1 to n do
if (cond) {
if (cond) {
do_stuff(sum)
do_stuff(sum)
} else {
} else {
for k = 1 to n*n
for k = 1 to n*n
sum += 1

```
```

 sum += 1
    ```
```


Linear Search Analysis

bool LinearArrayFind(int array[],
int n,
int key) \{
bool ArrayFind(int array[], int n, int key)\{
// Insert your algorithm here
And Another: Nested Loops
int key) \{
for (int i = 0; i < n; i++) \{
if(array[i] == key)
// Found it!
return true; Worst Case:
$\}$
return false,
\}

Best Case:

Worst Case:
return false;
\}

4/5/2007
16

Solving Recurrence Relations

1. Determine the recurrence relation. What is the base case(s)?
2. "Expand" the original relation to find an equivalent general expression in terms of the number of expansions.
3. Find a closed-form expression by setting the number of expansions to a value which reduces the problem to a base case

4/5/2007
18

Linear Search vs Binary Search

| | Linear Search | Binary Search |
| :--- | :--- | :--- |
| Best Case | | |
| Worst Case | | |

So ... which algorithm is better?
What tradeoffs can you make?

Fast Computer vs. Slow Computer

Fast Computer vs. Smart Programmer (round 1)

Fast Computer vs. Smart Programmer
(round 2)

Asymptotic Analysis

- Asymptotic analysis looks at the order of the running time of the algorithm
- A valuable tool when the input gets "large"
- Ignores the effects of different machines or different implementations of the same algorithm
- Intuitively, to find the asymptotic runtime, throw away the constants and low-order terms
- Linear search is $\mathrm{T}(n)=3 n+2 \in \mathbf{O}(\boldsymbol{n})$
- Binary search is $T(n)=4 \log _{2} n+4 \in \mathbf{O}(\log n)$

Remember: the fastest algorithm has the
slowest growing function for its runtime

Asymptotic Analysis

- Eliminate low order terms
$-4 n+5 \Rightarrow$
$-0.5 n \log n+2 n+7 \Rightarrow$
$-n^{3}+2^{n}+3 n \Rightarrow$
- Eliminate coefficients
$-4 n \Rightarrow$
$-0.5 n \log n \Rightarrow$
- $n \log n^{2}$ =>
Order Notation: Intuition

Order Notation

- Upper bound: $T(n)=O(f(n))$ Big-O

Exist constants c and n ' such that

$$
T(n) \leq c f(n) \quad \text { for all } n \geq n,
$$

- Lower bound: $T(n)=\Omega(g(n)) \quad$ Omega

Exist constants c and n ' such that

$$
T(n) \geq c g(n) \text { for all } n \geq n^{\prime}
$$

- Tight bound: $T(n)=\theta(f(n)) \quad$ Theta When both hold:

$$
T(n)=O(f(n))
$$

$$
T(n)=\Omega(f(n))
$$

$O(\mathrm{f}(\mathrm{n}))$ Definition

$\mathbf{O}(\mathbf{f}(\boldsymbol{n}))$: a set or class of functions
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n)) \quad$ iff there exist consts c and n_{0} such that:
$\mathrm{g}(n) \leq \mathrm{f}(n)$ for all $n \geq n_{0}$
Example:
$100 n^{2}+1000 \leq 5\left(n^{3}+2 n^{2}\right)$ for all $n \geq 19$
So $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$

Sometimes, you'll see the notation $\mathrm{g}(n)=\mathrm{O}(\mathrm{f}(n))$. This is equivalent to $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$.
Remember: notation $\mathrm{O}(\mathrm{f}(n))=\mathrm{g}(n)$ is meaningless!
45/2007

Order Notation: Example

Big-O: Common Names

Know Your Complexity Classes!

- constant:

O (1)

- logarithmic: $\quad \mathrm{O}(\log \mathrm{n})$
$\left(\log _{k} n, \log n^{2} \in O(\log n)\right)$
- linear:
$\mathrm{O}(\mathrm{n})$
- log-linear: $\quad O(n \log n)$
- quadratic: $\quad O\left(n^{2}\right)$
- cubic: $\quad \mathrm{O}\left(\mathrm{n}^{3}\right)$
- polynomial: $\quad \mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
- exponential: $\quad \mathrm{O}\left(\mathrm{c}^{\mathrm{n}}\right)$
(k is a constant)
(c is a constant > 1)

Meet the Family

- $O(f(n))$ is the set of all functions asymptotically less than or equal to $\mathrm{f}(n)$
- o(f(n)) is the set of all functions asymptotically strictly less than $\mathrm{f}(n)$
- $\Omega(\mathrm{f}(n))$ is the set of all functions asymptotically greater than or equal to $f(n)$
$-\omega(\mathrm{f}(n))$ is the set of all functions asymptotically strictly greater than $\mathrm{f}(n)$
- $\theta(f(n))$ is the set of all functions asymptotically equal to $f(n)$

Meet the Family, Formally

- $g(n) \in O(f(n))$ iff

There exist c and n_{0} such that $g(n) \leq c \mathrm{f}(n)$ for all $n \geq n_{0}$ $-\mathrm{g}(n) \in \mathrm{o}(\mathrm{f}(n))$ iff

There exists a n_{0} such that $\mathrm{g}(n)<c \mathrm{f}(n)$ for all c and $n \geq n_{0}$

- $g(n) \in \Omega(f(n))$ iff \quad Equivalent to: $\lim _{n \rightarrow \infty} g(n) / f(n)=0$ There exist c and n_{0} such that $g(n) \geq c f(n)$ for all $n \geq n_{0}$ $-\mathrm{g}(n) \in \omega(\mathrm{f}(n))$ iff

There exists a n_{0} such that $\mathrm{g}(n)>c \mathrm{f}(n)$ for all c and $n \geq n_{0}$

- $g(n) \in \theta(f(n))$ iff Equivalent to: $\lim _{n \rightarrow \infty} g(n) / f(n)=\infty$ $\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n))$ and $\mathrm{g}(n) \in \Omega(\mathrm{f}(n))$

4/5/2007

Big-Omega et al. Intuitively

| Asymptotic Notation | Mathematics Relation |
| :---: | :---: |
| O | \leq |
| Ω | \geq |
| θ | $=$ |
| o | $<$ |
| ω | $>$ |

4/5/2007

Types of Analysis

Two orthogonal axes:

- bound flavor
- upper bound (O, o)
- lower bound (Ω, ω)
- asymptotically tight (θ)
- analysis case
- worst case (adversary)
- average case
- best case
- "amortized"

4/5/2007
Pros and Cons of Asymptotic
Running time may depend on actual data input, not just length of input

- Distinguish
- worst case
- your worst enemy is choosing input
- best case
- average case
- assumes some probabilistic distribution of inputs
- amortized
- average time over many operations

Analysis

