CSE 326: Data Structures

Asymptotic Analysis

Hal Perkins
Spring 2007
Lectures 2 & 3

Today’s Outline

» Admin: Project 1
» Asymptotic analysis

4/5/2007

Office Hours, etc.

The plan so far...

Hal Perkins MW 3:40-4:30 CSE 548
(except today)

Andy Sun Tue 12:30-1:30 CSE 002 lab

Marius Nita Thur 2:30-3:20 CSE 3" floor breakout
Or by appointment.
(Comments? Conflicts?)

TODO : Important!
1. Subscribe to mailing list if you haven’t
2. Hand in info sheet

4/5/2007 3

Project 1 — Sound Blaster!

Play your favorite song in reverse!
Aim:
1. Implement stack ADT two different ways (array, linked
list)
2. Use to reverse a sound file

Due: Wed, April 4
Electronic: at midnight, April 4
Hardcopy: in sections Thursday

4/5/2007

Comparing Two Algorithms What we want

* Rough Estimate
* Ignores Details

» Characterize and compare algorithms independent
of implementation details
— (coding tricks, machine speed, compiler optimizations)

4/5/2007 5 4/5/2007 6
Analysis of Algorithms Asymptotic Analysis
* Efficiency measure « Complexity as a function of input size n
— how long the program runs time complexity T()=4n+5
— how much memory it uses space complexity T()=05nlogn-2n+7

« For today, we’ll focus on time complexity only T(n) = 2N+ 13 +3n
* Analysis is in terms of the problem size
— Size depends on problem being solved

— Typical: size of data structure, magnitude of some numeric
parameter, ...

» What happens as n grows?

4/5/2007 7 4/5/2007 8

Why Asymptotic Analysis?
* Most algorithms are fast for small n

— Time difference too small to be noticeable
— External things dominate (OS, disk 1/0, ...)

* BUT n is often large in practice
— Databases, internet, graphics, ...

« Time difference really shows up as n grows!

4/5/2007

Analyzing Code

Basic Java operations
Consecutive statements
Conditionals

Loops

Function calls
Recursive functions

Let’s try it!

4/5/2007

Constant time

Sum of times

Larger branch plus test
Sum of iterations

Cost of function body
Solve recurrence relation

10

Algorithm Analysis Examples

¢ Consider the following
program segment:
x:= 0;
for i =1 to N do
for j =1 to i do
X 1= X + 1;
¢ What is the value of x at
the end?
(equivalent: how many
times is x := x+1 executed
as a function of N?)

4/5/2007

11

Analyzing the Loop

» Total number of times X is incremented is

executed =

N

14243+..=) i=
i=1

N(N+1)

2

» Congratulations - You’ve just analyzed your first

program!

— Running time of the program is proportional to

N(N+1)/2 for all N

4/5/2007

12

Another Example: Nested Loops

for i =1 to n do
for j =1 to n do
sum = sum + 1

for i =1 to n do
for j =1 to n do
sum = sum + 1

4/5/2007 13

And Another: Nested Loops

for 1 =1 to n do
for j = 1 to n do

if (cond) {
do_stuff(sum)
} else {
for k =1 to n*n
sum += 1
4/5/2007 14

Exercise - Searching

BROEEREE

bool ArrayFind(int array[], int n,
int key){

/I Insert your algorithm here

What algorithm would you choose
4/5/2007 to implement this code snippet?

Linear Search Analysis

bool LinearArrayFind(int array[],

int n,
int key) {
forC int i = 0; ¥ <n; i++) { Best Case:
if(array[i] == key)
// Found it!
return true; Worst Case:
¥
return false;

}

4/5/2007 16

Binary Search Analysis

bool BinArrayFind(int array[], int low,
int high, int key) {
/l The subarray is empty

if(low > high) return false; Best case
/I Search this subarray recursively
int mid = ¢Chigh + low) 7/ 2;
if(key == array[mid]) {
return true;
} else if(key < array[mid]) {
return BinArrayFind(array, low,

Worst case:

mid-1, key);
} else {

return BinArrayFind(array, mid+1,
4/5/2007 high, key); 17

Solving Recurrence Relations

Determine the recurrence relation. What is the base case(s)?

“Expand” the original relation to find an equivalent general
expression in terms of the number of expansions.

Find a closed-form expression by setting the number of
expansions to a value which reduces the problem to a base case

4/5/2007 18

Linear Search vs Binary Search

Linear Search Binary Search
Best Case
Worst Case
So ... which algorithm is better?
What tradeoffs can you make?
4/5/2007 19

time in ms

Fast Computer vs. Slow Computer

500

" linear search on F'e:nliurrlu_-!\ar

450 | ear search on 48 |
400
as0 + 4
300 1
250
200
150
100
50 H _'___,__-——'“ S 4

0 20 40 60 &0 100
elts to be searched

Fast Computer vs. Smart Programmer
(round 1)

linear search on Pentium-1V
bin arch on 4

350

300

250

200

150

time in ms

100

0 20 40 60 80 100
elts to be searched L

Fast Computer vs. Smart Programmer

(round 2)

s linear search on Pentium-IV

800
g 600 +
k=
£
S 400

200

o L
0 200 400 600 800

elts to be searched

1000

Asymptotic Analysis

« Asymptotic analysis looks at the order of the
running time of the algorithm
— A valuable tool when the input gets “large”

— Ignores the effects of different machines or different
implementations of the same algorithm

« Intuitively, to find the asymptotic runtime, throw
away the constants and low-order terms
— Linear search is T(n) =3n+ 2 € O(n)
— Binary search is T(n) = 4 log,n + 4 € O(log n)

Remember: the fastest algorithm has the
4152007 slowest growing function for its rungime

Asymptotic Analysis

 Eliminate low order terms
-4n+5=>
- 05nlogn+2n+7=
-n+2"+3n=>
 Eliminate coefficients
-4n=>
- 05nlogn=
- nlogn?2=>

4/5/2007

24

Order Notation: Intuition

12000 T

"3+ 2072 —

100n"E + 1000 ——

10000

000

f(n) = n3 + 2n2 6000 |-
g(n) =100n2 + 1000 40|

2000

0

{2z s 4 s & 1 3 3

Although not yet apparent, as n gets “sufficiently

large”, f(n) will be “greater than or equal to” g(n)
25

4/5/2007

10

L]

4/5/2007

Order Notation

Upper bound: T(n) = O(f(n)) Big-O
Exist constants ¢ and n’ such that

T(n) <cf(n) foralln>n’
Lower bound: T(n) = £XAg(n)) Omega
Exist constants ¢ and n’ such that

T(n) >cg(n) foralln>n’
Tight bound: T(n) = 6(f(n)) Theta
When both hold:

T(n) = O(f(n))

T(n) = £Xf(n))

26

O(f(n)) Definition

O(f(n)) : aset or class of functions

9(n) € O(f(n))

g(n) < cf(n) forall n>n,

iff there exist consts ¢ and n, such that:

Example:
100n2 + 1000 <5 (nd+ 2n?) foralln>19
So g(n) € O(f(n))

Sometimes, you’ll see the notation g(n) = O(f(n)). This is
equivalent to g(n) e O(f(n)).
Remember: notation O(f(n)) = g(n) is meaningless!
4/5/2007 27

4/5/2007

Order Notation: Example

Fe+06

I -
Bet0s | 100n72 + 1000 —

Te+0b
Be+06
Se+06
de+06
Je+06
2e+06 -

le+06 |

0 1 . n . n n n
20 40 60 B0 100 120 140 160 180 200

100n2 + 1000 <5 (nd+ 2n?) foralln>19
So f(n) e O(g(n)) 2

Big-O: Common Names

— constant: o)

— logarithmic: ~ O(log n) (log,n, log n? € O(log n))

— linear: Oo(n)

— log-linear: O(n log n)

— quadratic: o(n?)

— cubic: O(n3)

— polynomial: ~ O(nk) (k is a constant)

— exponential: ~ O(c") (cis a constant > 1)
4/5/2007 29

Know Your Complexity Classes!

4/5/2007 30

Meet the Family

e O(f(n)) is the set of all functions asymptotically
less than or equal to f(n)
— o(f(n)) is the set of all functions asymptotically
strictly less than f(n)
o Q(f(n)) is the set of all functions asymptotically
greater than or equal to f(n)
— o(f(n)) is the set of all functions asymptotically
strictly greater than f(n)
» 0(f(n)) is the set of all functions asymptotically
equal to f(n)

4/5/2007 31

Meet the Family, Formally

e g(n) € O(f(n)) iff
There exist ¢ and n, such that g(n) < c f(n) for all n>n,
- g(n) € o(f(n)) iff
There exists a n, such that g(n) < ¢ f(n) forall cand n>n,
e g(n) e Q(f(n)) iff Equivalent to: lim,_, g(n)/f(n) =0
There exist ¢ and n, such that g(n) > c f(n) for all n > n,
- g(n) € o f(n)) iff
There exists a n, such that g(n) > ¢ f(n) for all cand n > n,
. g(n) e O(f(n)) iff Equivalent to: lim,_, . g(n)/f(n) = 0
g(n) € O(f(n)) and g(n) e Q(f(n))

4/5/2007 32

Big-Omega et al. Intuitively

Asymptotic Notation Mathematics Relation
o <
Q >
0 =
0 <
[0 >

4/5/2007

33

Perspective: Kinds of Analysis

* Running time may depend on actual data input, not
just length of input
« Distinguish
— worst case
¢ your worst enemy is choosing input
— best case
— average case
 assumes some probabilistic distribution of inputs
— amortized
« average time over many operations

4/5/2007 34

Types of Analysis

Two orthogonal axes:

— bound flavor
 upper bound (O, 0)
* lower bound (Q, ®)
« asymptotically tight (6)

— analysis case
 worst case (adversary)
* average case
* best case
* “amortized”
4/5/2007

35

Pros and Cons of Asymptotic
Analysis

4/5/2007 36

