
1

4/5/2007 1

CSE 326: Data Structures

Priority Queues – Binary Heaps

Hal Perkins
Spring 2007

Lectures 3 & 4

4/5/2007 2

Outline

• Admin (proj #1)
• Math/Big-O – short summary
• Priority Queues (Binary Min Heaps)

– Reading: Weiss, Ch. 6

4/5/2007 3

Project #1 Turn-in

• The turnin page for project 1 is now linked
to the project page.

• Turn in your electronic documents before
midnight on Wednesday.

• Turn in hardcopies in sections on Thursday
(whichever section you normally attend).

4/5/2007 4

Simplifying Recurrences
Given a recursive equation for the running time,
can sometimes simplify it for analysis.

• For an upper-bound analysis, can optionally simplify
to something larger, e.g.

T(n) = T(floor(n/2)) + 1 to T(n) ≤ T(n/2) + 1

• For a lower-bound analysis, can optionally simplify to
something smaller, e.g.

T(n) = 2T(n/2 + 5) + 1 to T(n) ≥ 2T(n/2) + 1

2

4/5/2007 5

The One Page Cheat Sheet
• Calculating series:

e.g.

1. Brute force (Section 1.2.3)
2. Induction (Section 1.2.5)
3. Memorize simple ones!

• Solving recurrences:
e.g. T(n) = T(n/2) + 1

1. Expansion (example in class)
2. Induction (Section 1.2.5)
3. Telescoping (later…)

• General proofs (Section 1.2.5)
e.g. How many edges in a tree with n nodes?
1. Counterexample
2. Induction
3. Contradiction

∑
=

+
=

n

i

nni
1 2

)1(

4/5/2007 6

Processor Scheduling

4/5/2007 7

Priority Queue ADT
• Checkout line at the supermarket ???
• Printer queues ???
• operations: insert, deleteMin

insert deleteMin

6 2
15 23

12 18
45 3 7

4/5/2007 8

Priority Queue ADT
1. PQueue data : collection of data with priority

2. PQueue operations
– insert
– deleteMin
(also: create, destroy, is_empty)

3. PQueue property: for two elements in the
queue, x and y, if x has a lower priority value
than y, x will be deleted before y

3

4/5/2007 9

Applications of the Priority Q
• Select print jobs in order of decreasing length
• Forward packets on network routers in order of

urgency
• Select most frequent symbols for compression
• Sort numbers, picking minimum first

• Anything greedy

4/5/2007 10

Implementations of Priority Queue ADT

Sorted list (Array)

Unsorted list (Linked-List)

Binary Search Tree (BST)

Sorted list (Linked-List)

Unsorted list (Array)

deleteMininsert

4/5/2007 11

Tree Review
A

E

B

D F

C

G

IH

LJ MK N

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(C):

Tree T

4/5/2007 12

More Tree Terminology
A

E

B

D F

C

G

IH

LJ MK N

depth(T):

height(G):

degree(B):

branching factor(T):

Tree T

4

4/5/2007 13

Some More Tree Terminology

JIH

GFED

CB

AT is binary if …

T is n-ary if …

T is complete if …

Tree T

How deep is a complete tree with n nodes?
4/5/2007 14

Brief interlude: Some Definitions:
A Perfect binary tree – A binary tree with all

leaf nodes at the same depth. All internal
nodes have 2 children.

2592
215

11

307 101 3

16

13 19 22

height h
2h+1 – 1 nodes
2h – 1 non-leaves
2h leaves

4/5/2007 15

Full Binary Tree

• A binary tree in which each node has
exactly zero or two children.

• (also known as a proper binary tree)
• (we will use this later for Huffman trees)

4/5/2007 16

Binary Heap Properties

1. Structure Property
2. Ordering Property

5

4/5/2007 17

Heap Structure Property
• A binary heap is a complete binary tree.
Complete binary tree – binary tree that is

completely filled, with the possible exception of
the bottom level, which is filled left to right.

Examples:

4/5/2007 18

Representing Complete
Binary Trees in an Array

GED
CB

A

J KH I

F

L

From node i:

left child:
right child:
parent:

7

1

2 3

4 5 6

98 10 11 12

131211109876543210
LKJIHGFEDCBA

implicit (array) implementation:

4/5/2007 19

Why better than tree with pointers?

4/5/2007 20

Heap Order Property
Heap order property: For every non-root

node X, the value in the parent of X is less
than (or equal to) the value in X.

1530

8020

10

996040

8020

10

50 700

85

not a heap

6

4/5/2007 21

Heap Operations
• findMin:
• insert(val): percolate up.
• deleteMin: percolate down.

996040

8020

10

50 700

85

65

4/5/2007 22

Heap – Insert(val)

Basic Idea:
1. Put val at “next” leaf position
2. Repeatedly exchange node with its parent

if needed

4/5/2007 23

Insert: percolate up

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60

4/5/2007 24

Insert pseudo/C++ Code (optimized)
void insert(Object o) {
assert(!isFull());
size++;
newPos =
percolateUp(size,o);

Heap[newPos] = o;
}

int percolateUp(int hole,
Object val) {

while (hole > 1 &&
val < Heap[hole/2])

Heap[hole] = Heap[hole/2];
hole /= 2;

}
return hole;

}

runtime:

(Java code in book)

7

4/5/2007 25

Heap – Deletemin

Basic Idea:
1. Remove root (that is always the min!)
2. Put “last” leaf node at root
3. Find smallest child of node
4. Swap node with its smallest child if needed.
5. Repeat steps 3 & 4 until no swaps needed.

4/5/2007 26

DeleteMin: percolate down

996040

1520

10

50 700

85

65

996040

6520

15

50 700

85

4/5/2007 27

DeleteMin pseudo/C++ Code (Optimized)
Object deleteMin() {

assert(!isEmpty());
returnVal = Heap[1];
size--;
newPos =

percolateDown(1,
Heap[size+1]);

Heap[newPos] =
Heap[size + 1];

return returnVal;
}

int percolateDown(int hole,
Object val) {

while (2*hole <= size) {
left = 2*hole;
right = left + 1;
if (right ≤ size &&

Heap[right] < Heap[left])
target = right;

else
target = left;

if (Heap[target] < val) {
Heap[hole] = Heap[target];
hole = target;

}
else
break;

}
return hole;

}

runtime:

(Java code in book) 4/5/2007 28

876543210

Insert: 16, 32, 4, 69, 105, 43, 2

8

4/5/2007 29

More Priority Queue Operations
• decreaseKey

– given a pointer to an object in the queue, reduce its priority value

Solution: change priority and ____________________________

• increaseKey
– given a pointer to an object in the queue, increase its priority value

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?

4/5/2007 30

More Heap Operations
decreaseKey(objPtr, amount): raise the priority of a

object, percolate up
increaseKey(objPtr, amount): lower the priority of a

object, percolate down
remove(objPtr): remove a object, move to top, them

delete. 1) decreaseKey(objPtr, ∞)
2) deleteMin()

Worst case Running time for all of these:
FindMax?
ExpandHeap – when heap fills, copy into new space.

4/5/2007 31

More Priority Queue Operations
• Remove(objPtr)

– given a pointer to an object in the queue,
remove it

Solution: set priority to negative infinity,
percolate up to root and deleteMin

• buildHeap
Naïve solution:
Running time:

Can we do better? 4/5/2007 32

BuildHeap: Floyd’s Method

5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

27184

96103

115

12

9

4/5/2007 33

Buildheap pseudocode

private void buildHeap() {
for (int i = currentSize/2; i > 0; i--)

percolateDown(i);
}

runtime:

4/5/2007 34

BuildHeap: Floyd’s Method

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12

4/5/2007 35

Finally…

11710812

9654

23

1

runtime:

4/5/2007 36

Facts about Heaps
Observations:
• finding a child/parent index is a multiply/divide by two
• operations jump widely through the heap
• each percolate step looks at only two new nodes
• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast
• looking at only two new pieces of data: bad for cache!
• with huge data sets, disk accesses dominate

10

4/5/2007 37

CPU

Cache

Memory

Disk

Cycles to access:

4/5/2007 38

4

9654

23

1

8 1012

7

11

A Solution: d-Heaps
• Each node has d children
• Still representable by

array
• Good choices for d:

– (choose a power of two
for efficiency)

– fit one set of children in a
cache line

– fit one set of children on a
memory page/disk block

3 7 2 8 5 12 1110 6 9112

4/5/2007 39

Operations on d-Heap

• Insert : runtime =

• deleteMin: runtime =

Does this help insert or deleteMin more?
4/5/2007 40

One More Operation

• Merge two heaps. Ideas?

