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CSE 326: Data Structures

Priority Queues – Binary Heaps

Hal Perkins
Spring 2007

Lectures 3 & 4
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Outline

• Admin (proj #1)
• Math/Big-O – short summary
• Priority Queues (Binary Min Heaps)

– Reading: Weiss, Ch. 6
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Project #1 Turn-in

• The turnin page for project 1 is now linked 
to the project page. 

• Turn in your electronic documents before 
midnight on Wednesday.

• Turn in hardcopies in sections on Thursday 
(whichever section you normally attend).
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Simplifying Recurrences
Given a recursive equation for the running time,
can sometimes simplify it for analysis.

• For an upper-bound analysis, can optionally simplify 
to something larger, e.g.

T(n) = T(floor(n/2)) + 1 to    T(n) ≤ T(n/2) + 1

• For a lower-bound analysis, can optionally simplify to 
something smaller, e.g.

T(n) = 2T(n/2 + 5) + 1 to T(n) ≥ 2T(n/2) + 1
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The One Page Cheat Sheet
• Calculating series:

e.g.

1. Brute force (Section 1.2.3)
2. Induction (Section 1.2.5)
3. Memorize simple ones!

• Solving recurrences:
e.g.   T(n) = T(n/2) + 1

1. Expansion (example in class)
2. Induction (Section 1.2.5)
3. Telescoping (later…)

• General proofs (Section 1.2.5)
e.g.   How many edges in a tree with n nodes?
1. Counterexample
2. Induction
3. Contradiction
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Processor Scheduling
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Priority Queue ADT
• Checkout line at the supermarket ???
• Printer queues ???
• operations: insert, deleteMin

insert deleteMin

6   2
15  23

12   18
45   3    7
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Priority Queue ADT
1. PQueue data : collection of data with priority

2. PQueue operations
– insert
– deleteMin
(also: create, destroy, is_empty)

3. PQueue property: for two elements in the 
queue, x and y, if x has a lower priority value
than y, x will be deleted before y
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Applications of the Priority Q
• Select print jobs in order of decreasing length
• Forward packets on network routers in order of 

urgency
• Select most frequent symbols for compression
• Sort numbers, picking minimum first

• Anything greedy
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Implementations of Priority Queue ADT

Sorted list (Array)

Unsorted list (Linked-List)

Binary Search Tree (BST)

Sorted list (Linked-List)

Unsorted list (Array)

deleteMininsert
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Tree Review
A

E

B

D F

C

G

IH

LJ MK N

root(T):
leaves(T):
children(B):
parent(H):
siblings(E):
ancestors(F):
descendents(G):
subtree(C):

Tree T
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More Tree Terminology
A

E

B

D F

C

G

IH

LJ MK N

depth(T):

height(G):

degree(B):

branching factor(T):

Tree T
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Some More Tree Terminology

JIH

GFED

CB

AT is binary if …

T is n-ary if …

T is complete if …

Tree T

How deep is a complete tree with n nodes?
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Brief interlude: Some Definitions:
A Perfect binary tree – A binary tree with all 

leaf nodes at the same depth. All internal 
nodes have 2 children. 

2592
215

11

307 101 3

16

13 19 22

height h
2h+1 – 1 nodes
2h – 1 non-leaves
2h  leaves
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Full Binary Tree

• A binary tree in which each node has 
exactly zero or two children. 

• (also known as a proper binary tree)
• (we will use this later for Huffman trees)
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Binary Heap Properties

1. Structure Property
2. Ordering Property
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Heap Structure Property
• A binary heap is a complete binary tree.
Complete binary tree – binary tree that is 

completely filled, with the possible exception of 
the bottom level, which is filled left to right.

Examples:
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Representing Complete 
Binary Trees in an Array

GED
CB

A

J KH I

F

L

From node i:

left child:
right child:
parent:

7

1

2 3

4 5 6

98 10 11 12

131211109876543210
LKJIHGFEDCBA

implicit (array) implementation:
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Why better than tree with pointers?
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Heap Order Property
Heap order property: For every non-root 

node X, the value in the parent of X is less 
than (or equal to) the value in X.

1530

8020

10

996040

8020

10

50 700

85

not a heap
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Heap Operations
• findMin:
• insert(val): percolate up.
• deleteMin: percolate down.

996040

8020

10

50 700

85

65
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Heap – Insert(val)

Basic Idea: 
1. Put val at “next” leaf position
2. Repeatedly exchange node with its parent 

if needed
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Insert: percolate up

996040

8020

10

50 700

85

65 15

992040

8015

10

50 700

85

65 60
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Insert pseudo/C++ Code (optimized)
void insert(Object o) {
assert(!isFull());
size++;
newPos =
percolateUp(size,o);

Heap[newPos] = o;
}

int percolateUp(int hole, 
Object val) {

while (hole > 1 &&
val < Heap[hole/2])

Heap[hole] = Heap[hole/2];
hole /= 2;

}
return hole;

}

runtime:

(Java code in book)
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Heap – Deletemin

Basic Idea: 
1. Remove root (that is always the min!)
2. Put “last” leaf node at root
3. Find smallest child of node
4. Swap node with its smallest child if needed.
5. Repeat steps 3 & 4 until no swaps needed.
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DeleteMin: percolate down

996040

1520

10

50 700

85

65

996040

6520

15

50 700

85
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DeleteMin pseudo/C++ Code (Optimized)
Object deleteMin() {

assert(!isEmpty());
returnVal = Heap[1];
size--;
newPos = 

percolateDown(1,
Heap[size+1]);

Heap[newPos] = 
Heap[size + 1];

return returnVal;
}

int percolateDown(int hole,
Object val) {

while (2*hole <= size) {
left = 2*hole; 
right = left + 1;
if (right ≤ size && 

Heap[right] < Heap[left])
target = right;

else
target = left;

if (Heap[target] < val) {
Heap[hole] = Heap[target];
hole = target;

}
else
break;

}
return hole;

}

runtime:

(Java code in book) 4/5/2007 28

876543210

Insert: 16, 32, 4, 69, 105, 43, 2
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More Priority Queue Operations
• decreaseKey

– given a pointer to an object in the queue, reduce its priority value

Solution:  change priority and ____________________________

• increaseKey
– given a pointer to an object in the queue, increase its priority value

Solution: change priority and _____________________________

Why do we need a pointer? Why not simply data value?
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More Heap Operations
decreaseKey(objPtr, amount): raise the priority of a 

object, percolate up
increaseKey(objPtr, amount): lower the priority of a 

object, percolate down
remove(objPtr): remove a object, move to top, them 

delete. 1) decreaseKey(objPtr, ∞)
2) deleteMin()

Worst case Running time for all of these: 
FindMax?
ExpandHeap – when heap fills, copy into new space.
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More Priority Queue Operations
• Remove(objPtr)

– given a pointer to an object in the queue, 
remove it

Solution:  set priority to negative infinity, 
percolate up to root and deleteMin

• buildHeap
Naïve solution:
Running time:

Can we do better? 4/5/2007 32

BuildHeap: Floyd’s Method

5 11 3 10 6 9 4 8 1 7 212

Add elements arbitrarily to form a complete tree.
Pretend it’s a heap and fix the heap-order property!

27184

96103

115

12
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Buildheap pseudocode

private void buildHeap() {
for ( int i = currentSize/2; i > 0; i-- )

percolateDown( i );
}

runtime:
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BuildHeap: Floyd’s Method

67184

92103

115

12

671084

9213

115

12

1171084

9613

25

12

1171084

9653

21

12
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Finally…

11710812

9654

23

1

runtime:

4/5/2007 36

Facts about Heaps
Observations:
• finding a child/parent index is a multiply/divide by two
• operations jump widely through the heap
• each percolate step looks at only two new nodes
• inserts are at least as common as deleteMins

Realities:
• division/multiplication by powers of two are equally fast
• looking at only two new pieces of data: bad for cache!
• with huge data sets, disk accesses dominate
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CPU

Cache

Memory

Disk

Cycles to access:
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4

9654

23

1

8 1012

7

11

A Solution: d-Heaps
• Each node has d children
• Still representable by 

array
• Good choices for d:

– (choose a power of two 
for efficiency)

– fit one set of children in a 
cache line

– fit one set of children on a 
memory page/disk block

3 7 2 8 5 12 1110 6 9112
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Operations on d-Heap

• Insert       :    runtime =

• deleteMin:   runtime = 

Does this help insert or deleteMin more?
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One More Operation

• Merge two heaps. Ideas?


