

The Binomial <u>Tree</u>, B_h

- B_h has height *h* and exactly 2^h nodes
- B_h is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly *h* children
- Number of nodes at depth d is binomial coeff. $\binom{h}{d}$ - Hence the name; we will *not* use this last property

Operations on Binomial Queue

• Will again define *merge* as the base operation – insert, deleteMin, buildBinomialQ will use merge

6

- Can we do increaseKey efficiently? decreaseKey?
- What about findMin?

4/15/2007

Insert in a Binomial QueueInsert(x): Similar to leftist or skew heapruntimeWorst case complexity: same as merge
O()Average case complexity:O(1)Why??Hint: Think of adding 1 to 1101

4/15/2007

15

